SIMPLIFYING LOGARITHMIC EXPRESSIONS

To simplify logarithmic expressions, you must be aware of the following three fundamentals laws of logarithms. 

Law 1 : 

Logarithm of product of two numbers is equal to the sum of the logarithms of the numbers to the same base. 

That is, 

logamn  =  logam + logan

Law 2 : 

Logarithm of the quotient of two numbers is equal to the difference of their logarithms to the same base. 

That is, 

loga(m/n)  =  logam - logan

Law 3 : 

Logarithm of a number raised to a power is equal to the power multiplied by the logarithm of the number to the same base.  

That is, 

logamn  =  nlogam

Change of Base : 

logba  =  logx⋅ logbx

logba  =  logxa/logxb

Simplify each of the following expressions :

Example 1 :

log5 25 +  log5 625

Solution :

=  log525 + log5625 

=  log5(25 ⋅ 625)

=  log5(52 ⋅ 54)

=  log55(2 + 4)

=  log556

 =  6log55

=  6(1)

=  6

Example 2 :

log5 4 +  log5 (1/100)

Solution :

=  log54 + log5(1/100) 

=  log5(4 ⋅ 1/100)

=  log5(1/25)

=  log5(1/52)

=  log55-2

=  -2log55

=  -2(1)

=  -2

Example 3 :

log8 128 -  log16

Solution :

=  log8128 -  log816

=  log8(128/16)

=  log88

=  1

Example 4 :

log3 2  log4⋅ log5⋅ log6⋅ log7⋅ log8 7

Solution :

In the given expression, logarithms have bases.

First group the logarithms with the same base and simplify.

=  (log3 log43) ⋅ (log5⋅ log65) ⋅ (log7⋅ log87)

=  log4⋅ log64  log86

=  log6 log86

=  log82

=  1/log28

=  1/log223

=  1/3(log22)

=  1/3(1)

=  1/3

Example 5 :

log7 21 + log7 77 + log7 88 - log7 121 - log7 24

Solution :

=  log721 + log777 + log788 - log7121 - log724

=  log7(21 ⋅ 77 ⋅ 88) - (log7121 + log724)

 =  log7(21 ⋅ 77 ⋅ 88) - log7(121 ⋅ 24)

=  log7142296 - log72904

=  log7(142296/2904)

=  log749

=  log772

=  2log77

=  2(1)

=  2

Example 6 :

log8 16 + log8 52 - 1/log13 8

Solution :

=  log816 + log852 - 1/log138

 log816 + log852 - log813

=  log8[(16 ⋅ 52)/13]

=  log8(16 ⋅ 4)

=  log864

=  log882

=  2log88

=  2(1)

=  2

Example 7 :

5log10 2 + 2log10 3 - 6log64 4

Solution :

=  5log102 + 2log103 - 6log644

=  5log102 + 2log103 - (2 ⋅ 3) log644

 log10 25log10 32 - 2log64 43

 log1032 + log109 - 2log6464

 log1032 + log109 - 2 (1)

 log1032 + log109 - 2log1010

=  log10(32  9) - log10102

=  log10(288/100)

=  log10(72/25)

Example 8 :

log10 8 + log10 5 - log10 4

Solution :

=  log108 + log105 - log104

=  log10[(8 ⋅ 5)/4]

=  log10(40/4)

 log1010

=  1

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 5)

    Jan 06, 25 05:53 AM

    AP Calculus AB Problems with Solutions (Part - 5)

    Read More

  2. ALGEBRA - II : Simplifying Complex Fractions Problems and Solutions

    Jan 06, 25 02:23 AM

    ALGEBRA - II : Simplifying Complex Fractions Problems and Solutions

    Read More

  3. ALGEBRA - II : Factoring Polynomials Problems with Solutions

    Jan 06, 25 02:20 AM

    ALGEBRA - II : Factoring Polynomials Problems with Solutions

    Read More