The number which is in the form of a + ib is known as complex number. Every complex numbers will have two parts. They are real part and imaginary part.
To add and subtract complex numbers, we have to combine the real parts together and imaginary parts together.
(a + ib) + (c + id) :
= (a + c) + (ib + id)
= (a + c) + i(c + d)
Example 1 :
Add (-3i) and (3 + 5i).
Solution :
(-3i) + (3 + 5i) = 3 + (-3i + 5i)
= 3 + 2i
Example 2 :
Add (-6 - 2i) and (6 - 5i).
Solution :
(-6 - 2i) + (6 - 5i) = (-6 + 6) + (-2i - 5i)
= 0 + (-7i)
= -3i
Example 3 :
Add (5 + 6i) and (2 - 7i).
Solution :
(5 + 6i) + (2 - 7i) = (5 + 2) + (6i - 7i)
= 7 + (-i)
= 7 - i
Example 4 :
Add (5 - 6i), 5i and (7 + 6i).
Solution :
(5 - 6i) + 5i + (7 + 6i) = (5 + 7) + (-6i + 5i + 6i)
= 12 + 5i
Example 5 :
Simplify : (-7 + 7i) - (-7 - 3i) + (-7 - 8i).
Solution :
(-7 + 7i) - (-7 - 3i) + (-7 - 8i) = -7 + 7i + 7 + 3i - 7 - 8i
= (-7 + 7 - 7) + (7i + 3i - 8i)
= -7 + 2i
Example 6 :
Simplify : (-4 - 7i) - (4 + 5i) - (2 - i).
Solution :
(-4 - 7i) - (4 + 5i) - (2 - i) = -4 - 7i - 4 - 5i - 2 + i
= (-4 - 4 - 2) + (-7i - 5i + i)
= -10 + (-11i)
= -10 - 11i
Example 7 :
Simplify : (1 + 6i) + (6 - 2i) - (-7 + 5i).
Solution :
(1 + 6i) + (6 - 2i) - (-7 + 5i) = 1 + 6i + 6 - 2i + 7 - 5i
= (1 + 6 + 7) + (6i - 2i - 5i)
= 14 + (-i)
= 14 - i
Example 8 :
Simplify : (-5 + 7i) - (-6 + i) - (-6 + 5i).
Solution :
(-5 + 7i) - (-6 + i) - (-6 + 5i) = -5 + 7i + 6 - i + 6 - 5i
= (-5 + 6 + 6) + (7i - i - 5i)
= 7 + i
Example 9 :
Subtract (3 - 4i) from (8 + 2i).
Solution :
(8 + 2i) - (3 - 4i) = 8 + 2i - 3 + 4i
= (8 - 3) + (2i + 4i)
= 5 + 6i
Example 10 :
Subtract (-5 - i) from (2 - 7i).
Solution :
(2 - 7i) - (-5 - i) = 2 - 7i + 5 + i
= (2 + 5) + (-7i + i)
= 7 + (-6i)
= 7 - 6i
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 26, 25 07:59 PM
Jan 26, 25 06:56 AM
Jan 25, 25 01:00 AM