Addition :
(f + g)(x) = f(x) + g(x)
Subtraction :
(f - g)(x) = f(x) - g(x)
Multiplication :
(f ⋅ g)(x) = f(x) ⋅ g(x)
Division:
(f/g)(x) = f(x)/g(x), g(x) ≠ 0
Example 1 :
What is (f + g)(x) ?
f(x) = -x + 5 and g(x) = 3x + 2
Solution :
(f + g)(x) = f(x) + g(x)
= -x + 5 + 3x + 2
= 2x + 7
Example 2 :
What is (f - g)(x) ?
f(x) = 2x2 + 5x - 7 and g(x) = -4x2 + 2x + 3
Solution :
(f - g)(x) = f(x) - g(x)
= 2x2 + 5x - 7 -(-4x2 + 2x + 3)
= 2x2 + 5x - 7 + 4x2 - 2x - 3
= 6x2 + 3x - 10
Example 3 :
What is (f + g - h)(x) ?
f(x) = 4x - 7, g(x) = 3x + 18 and h(x) = -5x + 2
Solution :
(f + g - h)(x) = f(x) + g(x) - h(x)
= (4x - 7) + (3x + 18) - (-5x + 2)
= 4x - 7 + 3x + 18 + 5x - 2
Combine the like terms.
= 12x + 9
Example 4 :
What is (f ⋅ g)(x) ?
f(x) = 3x2 and g(x) = 5x + 2
Solution :
(f ⋅ g)(x) = f(x)g(x)
= (3x2)(5x + 2)
= 15x3 + 6x2
Example 5 :
What is (f/g)(x) ?
f(x) = (5x + 20) and g(x)(7x + 28)
Solution :
(f/g)(x) = f(x)/g(x)
= (5x + 20)/(7x + 28)
= 5(x + 4)/7(x + 4)
= 5/7
Example 6 :
What is (f ⋅ g ⋅ h)(x) ?
f(x) = 6x - 8, g(x) = x/2 and h(x) = 4x
Solution :
(f ⋅ g ⋅ h)(x) = f(x)g(x)h(x)
= (6x - 8)(x/2)(4x)
= (6x - 8)(x)(2x)
= (6x - 8)(2x2)
= 12x3 - 16x2
Example 7 :
If f(x) = 3x + 2 and g(y) = 5y + 1, evaluate f(2)g(4).
Solution :
f(x)g(y) = (3x + 2)(5y + 1)
Substitute x = 2 and y = 4.
f(x)g(y) = (3x + 2)(5y + 1)
Substitute x =2 and y = 4
f(2)g(4) = [3(2) + 2][5(4) + 1]
= (6 + 2)(20 + 1)
= (8)(21)
= 168
Example 8 :
What is (f/g)(x) ?
f(x) = xy + 3x - 2y - 6 and g(x) = y2 + y - 6
Solution :
(f/g)(x) = f(x)/g(x)
= (xy + 3x - 2y - 6)/(y2 + y - 6)
= [x(y + 3) - 2(y + 3)]/[(y + 3)(y - 2)]
= [(y + 3)(x - 2)]/[(y + 3)(y - 2)]
= (x - 2)/(y - 2)
Example 9 :
What is (f ⋅ g)(x) ?
f(x) = x2 - 4 and g(x) = x2 + 4
Solution :
(f ⋅ g)(x) = f(x)g(x)
= (x2 + 4)(x2 + 4)
= (x2)2 - 42
= x4 - 16
Example 10 :
What is (f/g)(x) ?
f(x) = ax - ay + bx - by and g(x) = ax - ay - bx + by
Solution :
(f/g)(x) = f(x)/g(x)
= (ax - ay + bx - by)/(ax - ay - bx + by)
= [a(x - y) + b(x - y)]/[a(x - y) - b(x - b)]
= [(x - y)(a + b)]/[(x - y)(a - b)]
= (a + b)/(a - b)
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 14, 25 12:34 AM
Jan 14, 25 12:23 AM
Jan 12, 25 11:03 PM