Angle-Angle-Side or AAS Congruence Postulate is a rule which can be used to prove the congruence of two triangles.
Explanation :
If two angles and non-included side of one triangle are equal to two angles and the corresponding non-included side of another triangle, then the two triangles are congruent.
Example :
In the diagram given below, prove that ΔEFG ≅ ΔJHG using two column proof.
Solution :
Statements FE ≅ JH ∠E ≅ ∠J ∠EGF ≅ ∠JGH ΔEFG ≅ ΔJHG |
Reasons Given Given Vertical Angles Theorem AAS Congruence Postulate |
1. Side-Side-Side (SSS) Congruence Postulate
If three sides of one triangle is congruent to three sides of another triangle, then the two triangles are congruent.
2. Side-Angle-Side (SAS) Congruence Postulate
If two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the two triangles are congruent.
3. Angle-Side-Angle (ASA) Congruence Postulate
If two angles and the included side of one triangle are equal to two angles and the included side of another triangle, then the two triangles are congruent.
4. Hypotenuse-Leg (HL) Theorem
If the hypotenuse and one leg of a right triangle are equal to the hypotenuse and one leg of another right triangle, then the two right triangles are congruent.
5. Leg-Acute (LA) Angle Theorem
If a leg and an acute angle of one right triangle are congruent to the corresponding parts of another right triangle, then the two right triangles are congruent.
6. Hypotenuse-Acute (HA) Angle Theorem
If the hypotenuse and an acute angle of a right triangle are congruent to the hypotenuse and an acute angle of another right triangle, then the two triangles are congruent.
7. Leg-Leg (LL) Theorem
If the legs of one right triangle are congruent to the legs of another right triangle, then the two right triangles are congruent.
Caution :
SSA and AAA can not be used to test congruent triangles.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 22, 25 02:43 AM
Jan 20, 25 09:31 PM
Jan 20, 25 09:27 PM