ANGLE SUBTENDED BY AN ARC AT THE CENTER WORKSHEET

(1)  Find the value of x in the following figure.

(2)  Find the value of x in the following figure.

(3)  Find the value of x in the following figure.

(4)  Find the value of x in the following figure.

(5)  Find the value of x in the following figure.

(6)  Find the value of x in the following figure.

(7)  Find the value of x in the following figure.

(8)  Find the value of x in the following figure.

(9)  Find the value of x in the following figure.

(10)  Find the value of x in the following figure.

Detailed Answer Key

Question 1 :

Find the value of x in the following figure.

Solution :

According to the theorem,

∠BOC  =  2∠BAC -----(1)

∠BOC  =  2x

BOC  + BOA + AOC   =  360°

∠BOC  + 120 + 90  =  360

BOC  + 210  =  360

BOC   =  360 - 210

BOC   =  150°

From this we may find the value of BAC. That is x

From (1)

BOC  =  2BAC 

150  =  2BAC 

BAC  =  150/2

=  75°

So, the value of x is 75.

Question 2 :

Find the value of x in the following figure.

Solution :

The angle in a semicircle is right angle.

ACB  =  90°

Sum of interior angels in a triangle is 180°.

CAB + ACB + ABC  =  180°

x + 90 + 35  =  180

x + 125  =  180

x  =  180 - 125

x  =  55

Question 3 :

Find the value of x in the following figure.

OA = OB = OC ( radius )

∠OCA  =  ∠OAC  =  30°

∠OBA  =  ∠OAB = 25°

BOC  =  2BAC

BAC  =  BAO + OAC

=  25 + 30

  =  55°

BOC  =  2(55)  =  110°

So, the value of x is 110.

Question 4 :

Find the value of x in the following figure.

Solution :

reflex AOC  =  360 - 130  =  230°

2ABC  =  reflex of AOC

Reflex of AOC  =  2x

x  =  Reflex of AOC / 2

=  230/2

=  115°

So, the value of x is 115. 

Question 5 :

Find the value of x in the following figure.

Solution :

In triangle DBC,

∠DBC + ∠DCB + ∠CDB  =  180°

CDB  =  90°

50 + x + 90  =  180

140 + x  =  180°

x  =  180 - 140

x  =  40

So, the value of x is 40.

Question 6 :

Find the value of x in the following figure.

∠AOB  =  2∠ACB

∠AOB  =  2(48)  =  96

In triangle AOB,

∠OAB + ∠ABO + ∠BOA  =  180

OA  =  OB  =  OC  =  Radius

OAB  =  OBA  =  x

x + x  + 96  =  180

2x + 96  =  180

2x  =  180 - 96

2x  =  84

x  =  84/2

x  =  42

So, the value of x is 42.

Question 7 :

Find the value of x in the following figure.

Solution :

Using the theorem the angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

ACB  =  (1/2)AOB

x°  =  (1/2)  80°

x°  =  40°

So, the value of x is 40.

Question 8 :

Find the value of x in the following figure.

Solution :

reflex ∠OB  =  2∠ACB

x  =  2 ⋅ 100°  =  200°

Question 9 :

Find the value of x in the following figure.

∠ABC + ∠BCA + ∠CAB  =  180°

56° + 90° + ∠CAB  =  180°

(BCA = angle on a semicircle  =  90°)

∠CAB  =  180° -  146°

x°  =  34°

So, the value of x is 34.

Question 10 :

Find the value of x in the following figure.

OA = OB = OC ( radius )

OCA  =  OAC  =  25°

OBC  =  OCB = 20°

∠ACB  =  ∠OCA + ∠OCB

=  25° + 20° =  45°

∠AOB  =  2∠ACB

x°  =  2(45°) 

x°  =  90°

So, the value of x is 90.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 6)

    Jan 15, 25 07:19 PM

    AP Calculus AB Problems with Solutions (Part - 6)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 100)

    Jan 14, 25 12:34 AM

    Digital SAT Math Problems and Solutions (Part - 100)

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 14, 25 12:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More