ANGLES IN A CYCLIC QUADRILATERAL WORKSHEET

1. In the figure given below, PQ is a diameter of a circle with center O. If PQR = 55°SPR = 25° and PQM = 50°. Find :

(i) QPR

(ii) QPM

(iii) PRS. 

2. In the figure shown below, ABCD is a cyclic quadrilateral whose diagonals intersect at P such that DBC = 30° and BAC = 50°Find :

(i) BCD 

(ii) CAD

3. In the figure given below, O is the center of a circle and ADC = 120°. Find the value of x.

4. In the figure given below, ABCD is a cyclic quadrilateral in which AB || DC. If BAD = 100° find

(i) BCD

(ii) ADC

(iii) ABC

5. In the figure given below, ABCD is a cyclic quadrilateral in which BCD = 100° and ABD = 50° find ADB. 

6)  Find the value of ∠PQR if PS || RQ and PQRS is cyclic quadrilateral.

missing-angle-in-cyclic-quadrilateral-q7.png

a) 45°     b) 50°    c) 80°    d) 90°

7)   What is the value of x if ∠AOC if ABCD is cyclic quadrilateral?

missing-angle-in-cyclic-quadrilateral-q8.png

a) 140°       b) 110°     c) 70°     d) 45°

8)  From the figure given below, ∠PAB = __________

missing-angle-in-cyclic-quadrilateral-q9.png

a) 90°     b) 110°    c) 95°     d) 75°

9)  Find x and y giving reasons for your answers :

missing-angle-in-cyclic-quadrilateral-q10.png

10) Find x and y.

missing-angle-in-cyclic-quadrilateral-q11.png

11)  Find x.

missing-angle-in-cyclic-quadrilateral-q12.png

12) Find the values of x and y.

missing-angle-in-cyclic-quadrilateral-q13.png

13)  Find x.

missing-angle-in-cyclic-quadrilateral-q14.png

14) Find the values of x and y.

missing-angle-in-cyclic-quadrilateral-q15.png

15) Find the value of a.

missing-angle-in-cyclic-quadrilateral-q16.png

1. Answer :

(i) PRQ = 90° (angles in a semi circle is a right angle)

In triangle PRQ,

PRQ + QPR + PQR = 180°

90° + QPR + 55° = 180°

145° + QPR  = 180°

QPR  =  35°

(ii)  In triangle QPM,

QPM + MQP + QMP = 180°

QPM + 50° + 90° = 180°

QPM + 140° = 180°

QPM = 40°

(iii) PQR + PSR = 180

55 + PSR = 180°

PSR =  125°

In triangle PSR,

PSR + SPR + PRS  =  180°

125° + 25° PRS  =  180°

150° + PRS  =  180°

PRS  =  30°

2. Answer :

Angles in the same segment must be equal

So, ∠CBD and CAD are equal.

∠CAD = CBD = 30°

DAB + DCB = 180

DAC + CAB + ∠BCD = 180°

30° + 50° ∠BCD = 180°

80° + ∠BCD = 180°

∠BCD = 100°

3. Answer :

In the figure given below, O is the center of a circle and ADC = 120°. Find the value of x.

ABCD is a cyclic quadrilateral. we have

ABC + ADC = 180°

ABC + 120° = 180°

ABC = 60°

Also ACB = 90° (angle on a semi circle)

In triangle ABC we have,

BAC + ACB + ABC = 180°

BAC + 90° + 60° = 180°

BAC + 150° = 180°

∠BAC = 30°

Hence the value of x is 30.

4. Answer :

BAD + BCD = 180°

100° + BCD = 180°

BCD = 80°

ADC = 80°

ADC + ABC = 180°

80° + ABC = 180°

ABC = 100°

5. Answer :

DAB + DCB = 180°

DAB + 100° = 180°

DAB = 80°

In triangle ADB,

DAB + ABD + BDA = 180°

80° + 50° + ADB = 180°

130° + ADB = 180°

ADB = 50°

6. Answer :

missing-angle-in-cyclic-quadrilateral-q7.png

∠P + ∠R = 180

∠P + 80 = 180

∠P = 180 - 80

∠P = 100

7. Answer :

missing-angle-in-cyclic-quadrilateral-q8.png

∠ABC + ∠CBE = 180

∠ABC + 70 = 180

∠ABC  = 180 - 70

∠ABC  = 110

∠ADC + ∠ABC = 180

∠ADC + 110 = 180

∠ADC = 180 - 110

∠ADC = 70

8. Answer :

missing-angle-in-cyclic-quadrilateral-q9.png

∠APB = ∠AQB

Angle lies in the same segment will be equal.

∠APB = ∠AQB = 60

∠PQB = ∠PQA + ∠AQB

∠PQB = 45 + 60

∠PQB = 105

∠PAB + ∠PQB = 180

∠PAB + 105 = 180

∠PAB = 180 - 105

∠PAB = 75

9. Answer :

missing-angle-in-cyclic-quadrilateral-q10.png

Exterior angles of cyclic quadrilateral are equal.

x = 80 and y = 120

10. Answer :

missing-angle-in-cyclic-quadrilateral-q11.png

80 + y = 180

y = 180 - 80

y = 100

70 + x = 180

x = 180 - 70

x = 110

So, the values of x and y are 110 and 100 degree.

11. Answer :

missing-angle-in-cyclic-quadrilateral-q12.png

∠SRT = x = ∠STR

∠RST = ∠RQT

∠RST = 180 - 100

∠RST = 80

In a triangle RST,

∠RST + ∠STR + ∠TRS = 180

80 + x + x = 180

2x = 180 - 80

2x = 100

x = 100/2

x = 50

So, the value of x is 50 degree.

12. Answer :

missing-angle-in-cyclic-quadrilateral-q13.png

∠AOC = 2∠ABC

∠AOC = 2x

130 = 2x 

x = 130/2

x = 65

In a cyclic quadrilateral, the sum of opposite angles is equal to 180 degree.

x + y = 180

65 + y = 180

y = 180 - 65

y = 115

13. Answer :

missing-angle-in-cyclic-quadrilateral-q14.png

∠M + ∠K = 180

x + x + 20 = 180

2x + 20 = 180

2x = 180 - 20

2x = 160

x = 160/2

x = 80

So, the value of x is 80.

14. Answer :

missing-angle-in-cyclic-quadrilateral-q15.png

y = 2x

x + 3x = 180

4x = 180

x = 180/4

x = 45

Applying the value of x, we get

y = 2(45)

y = 90

15. Answer :

missing-angle-in-cyclic-quadrilateral-q16.png

a + 30 = 110

a = 110 - 30

a = 80

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Using Partial Sums to Find Convergence or Diveregence

    Dec 29, 24 02:21 AM

    Using Partial Sums to Find Convergence or Diveregence of an Infinite Series

    Read More

  2. Digital SAT Math Problems and Solutions (part - 92)

    Dec 27, 24 10:53 PM

    digitalsatmath80.png
    Digital SAT Math Problems and Solutions (part - 92)

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 27, 24 10:48 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More