APPLYING PROPERTIES OF INTEGER EXPONENTS

Properties of Exponents

Property 1 :

If two terms are multiplied with the same base, the base has to be taken once and exponents have to be added.  

That is,

xm ⋅ xn  =  xm+n

Example :

34 ⋅ 35  =  34+5

34 ⋅ 35  =  39

Property 2 : 

If two terms are in division with the same base, the base has to be taken once and exponents have to be subtracted.

That is


xm ÷ xn  =  xm-n

Example :

37 ÷ 35  =  37-5

37 ÷ 35  =  32

Property 3 :

If there is an exponent for an exponential term, two exponents can either be multiplied or interchanged. 

That is

(xm)n  =  xmn

or 

(xm)n  =  (xn)m

Example :

(32)4  =  3(2)(4)

(32)4  =  38

Property 4 : 

If there is a common exponent for the product of two or more terms, the exponent can be distributed to each term.  

That is

(xy)m  =  xm ⋅ ym

Example :

(3 ⋅ 5)2  =  32 ⋅ 52

(3 ⋅ 5)2  =  9 ⋅ 25

(3 ⋅ 5)2  =  225.

Property 5 : 

If there is a common exponent for two terms in division, the exponent can be distributed to each term.  

That is

(x / y)m  =  xm / ym

Example :

(3 / 5)2  =  32 / 52

(3 / 5)2  =  9 / 25

Property 6 : 

If a term is moved from numerator to denominator or denominator to numerator, the sign of the exponent has to be changed. 

That is

x-m  =  1 / xm

Example :

3-2  =  1 / 32

3-2  =  1 / 9

Property 7 :

For any base, if the exponent is zero, its value is 1. 

That is

x0  =  1

Example :

30  =  1

Property 8 :

For any base base, if there is no exponent, the exponent is assumed to be 1.

That is

x  =  x1

Example :

31  =  3

Solved Problems

Problem 1 :

Simplify the expression given below.

(5 - 2)5 · 3-8 + (5 + 2)0

Solution : 

=  (5 - 2)5 · 3-8 + (5 + 2)0

=  35 · 3-8 + 70

=  35-8 + 1

=  3-3 + 1

=  1/27 + 1

=  1/27 + 1

=  1/27 + 27/27

=  (1 + 27) / 27

=  28/27

Therefore, 

(5 - 2)5 · 3-8 + (5 + 2)=  28/27

Problem 2 :

Simplify the expression given below.

[(3 + 1)2]3 / (7 - 3)2

Answer : 

=  [(3 + 1)2]3 / (7 - 3)2

=  [42]3 / 42

=  46 / 42

=  46 - 2

=  44

=  4 ⋅ 4 ⋅ 4 ⋅ 4

=  256

Therefore, 

[(3 + 1)2]3 / (7 - 3)=  256

Problem 3 :

Simplify the expression given below.

[(6 - 1)2](3 + 2)3

Answer : 

=  [(6 - 1)2]2 / (3 + 2)3

=  [52]2 / 53

=  54 / 53

=  54 - 3

=  51

=  5

Therefore, 

[(6 - 1)2](3 + 2)3  =  5

Problem 4 :

Simplify the expression given below.

[(2)2]3 -  (10 - 6) 4-5

Answer : 

=  [(2)2]3 -  (10 - 6) 4-5

=  43 -  4⋅ 4-5

=  43 -  44 - 5

=  43 -  4-1

=  64 - 1/4

=  64 - 1/4

=  256/4 - 1/4

=  (256 - 1) / 4

=  255/4

Therefore, 

[(2)2]3 -  (10 - 6) 4-5  =  255/4

Problem 5 :

Simplify the expression given below.

[(8)2]-1 ⋅ (10 - 8)14  4-5

Answer : 

=  [(8)2]-1 ⋅ (10 - 8)14  4-5

=  (8)-2   214  (22)-5

=  (23)-2   214  2-10

=  2-6   214 ⋅ 2-10

=  2-6 + 14 - 10

=  2-2

=  1/22

=  1/4

Therefore, 

[(8)2]-1 ⋅ (10 - 8)14  4-5  =  1/4

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Video Solutions (Part - 1)

    Nov 08, 24 04:58 AM

    SAT Math Video Solutions (Part - 1)

    Read More

  2. Divisibility Rules 1 to 10

    Nov 08, 24 04:55 AM

    Divisibility Rules 1 to 10 - Concept - Examples with step by step explanation

    Read More

  3. Trigonometric Identities Worksheet

    Nov 07, 24 06:47 PM

    tutoring.png
    Trigonometric Identities Worksheet

    Read More