ARITHMETIC SERIES IN SIGMA NOTATION

Instead of writing out the terms of an arithmetic sequence in a sum, you will often see this expressed in a shorthand form using sigma notation.

Key Point :

r = 1r = n ar = a1a2 + a3 + ......... + an

The value of r at the bottom of the sigma (here r = 1) shows where the counting starts.

The value of r at the top of the sigma (here r = n) shows where the counting stops.

Example 1 : 

Evaluate :

r = 1r = 10 (2r + 7)

Solution :

Substitute the first few values into the formula. 

r = 1r = 10 (2r + 7) = 2(1) + 7 + 2(2) + 7 + 2(3) + 7 + ......

= 9 + 11 + 13 + ......

The above is an arithmetic series with a1 = 9 and d = 2.

Use Sn = (n/2)[2a1 + (n - 1)d] to find the sum. 

(10/2)[2(9) + (10 - 1)2]

= 5[18 + (9)2]

= 5[18 + 18]

= 5[36]

= 180

Example 2 : 

Evaluate :

r = 3r = 10 (5r + 2)

Solution :

Substitute the first few values into the formula. 

r = 3r = 10 (5r + 2) = 5(3) + 2 + 5(4) + 2 + 5(5) + 2 + ......

= 17 + 22 + 27 + ......

The above is an arithmetic series with a1 = 17 and d = 5.

Use Sn = (n/2)[2a1 + (n - 1)d] to find the sum (from r = 3 to r = 10, there are 8 terms, so n = 8).

(8/2)[2(17) + (8 - 1)5]

= 4[34 + (7)5]

= 4[34 + 35]

= 4[69]

= 276

Example 3 : 

Write the following arithmetic series in sigma notation. 

4 + 7 + 10 + 13 + ........... + 28

Solution :

In the given arithmetic series,

a1 = 4

d = 7 - 4 = 3

Find the formula for nth term. 

an = a1 + (n - 1)d

Substitute a1 = 4 and d = 3.

an = 4 + (n - 1)3

= 4 + 3n - 3

= 3n + 1

Let an = 28.

an = 28

3n + 1 = 28

3n = 27

n = 9

In the given arithmetic series, 4 is the 1st term and 28 is the 9th term. 

Then, 

4 + 7 + 10 + 13 + ........... + 28 = n = 1n = 9 (3n + 1)

Example 4 : 

Write the following arithmetic series in sigma notation. 

-1 + 3 + 7 + 11 + ........... + 55

Solution :

In the given arithmetic series,

a1 = -1

d = 3 - (-1) = 3 + 1 = 4

Find the formula for nth term. 

an = a1 + (n - 1)d

Substitute a1 = -1 and d = 4.

an = -1 + (n - 1)4

= -1 + 4n - 4

= 4n - 5

Let an = 55.

an = 55

4n - 5 = 55

4n = 60

n = 15

In the given arithmetic series, -1 is the 1st term and 55 is the 15th term. 

Then, 

-1 + 3 + 7 + 11 + ........... + 55 = n = 1n = 15 (4n - 5)

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 26, 24 08:41 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 78)

    Nov 26, 24 08:33 PM

    digitalsatmath65.png
    Digital SAT Math Problems and Solutions (Part - 78)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 26, 24 05:55 AM

    digitalsatmath64.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More