Problem 1 :
If p = sinθ + cosθ, q = sinθ - cosθ, then find the value of
(p2 + q2)
Problem 2 :
If x = secθ + tanθ, q = secθ + tan θ, then find the value of
xy
Problem 3 :
If a = cscθ + cotθ, b = cscθ - cotθ, then find the value of
(a2 - b2)
Problem 4 :
Prove that
Problem 5 :
Prove that
(secA - cosecA)(1 + tanA + cotA) = tanAsecA - cotA cosecA
Problem 6 :
Eliminate θ from
acosθ = b
csinθ = d
where a, b, c and d are constants.
Problem 1 :
If p = sinθ + cosθ, q = sinθ - cosθ, then find the value of
(p2 + q2)
Solution :
p2 + q2 = (sinθ + cosθ)2 + (sinθ - cosθ)2
p2 + q2 = (sin2θ + cos2θ + 2sinθcosθ) + (sin2θ + cos2θ - 2sinθcosθ)
p2 + q2 = sin2θ + cos2θ + 2sinθcosθ + sin2θ + cos2θ - 2sinθcosθ
p2 + q2 = 2sin2θ + 2cos2θ
p2 + q2 = 2(sin2θ + cos2θ)
p2 + q2 = 2(1)
p2 + q2 = 2
Problem 2 :
If x = secθ + tanθ, q = secθ + tan θ, then find the value of
xy
Solution :
xy = (secθ + tanθ)(secθ - tanθ)
xy = sec2θ - tan2θ
xy = 1
Problem 3 :
If a = cscθ + cotθ, b = cscθ - cotθ, then find the value of
(a2 - b2)
Solution :
a2 - b2 = (cscθ + cotθ)2 - (cscθ - cotθ)2
a2 + b2 = (csc2θ + cot2θ + 2cscθcotθ) - (csc2θ + cot2θ - 2cscθcotθ)
a2 + b2 = csc2θ + cot2θ + 2cscθcotθ - csc2θ - cot2θ + 2cscθcotθ
a2 - b2 = 4cscθcotθ
Problem 4 :
Prove that
Solution :
Problem 5 :
Prove that
(secA - cosecA)(1 + tanA + cotA) = tanAsecA - cotA cosecA
Solution :
From (i) and (ii), we get the required result.
Problem 6 :
Eliminate θ from
acosθ = b
csinθ = d
where a, b, c and d are constants.
Solution :
acosθ = b
Multiply each side by c.
accosθ = bc
Square each side.
(accosθ)2 = (bc)2
a2c2cos2θ = b2c2 -----(1)
csinθ = d
Multiply each side by a.
acsinθ = ad
Square each side.
(acsinθ)2 = (ad)2
a2c2sin2θ = a2d2 -----(2)
Add (1) and (2).
a2c2cos2θ + a2c2 sin2θ = b2c2 + a2d2
a2c2(cos2θ + sin2θ) = b2c2 + a2d2
a2c2(1) = b2c2 + a2d2
a2c2 = b2c2 + a2d2
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 15, 24 08:14 AM
Dec 14, 24 03:48 AM
Dec 14, 24 03:44 AM