BINOMIAL EXPANSION USING ALGEBRAIC IDENTITIES

Algebraic identities used in expanding binomials :

(a+b)2  =  a2+2ab+b2

(a+b)2  =  a2-2ab+b2

(a+b)3  =  a3+3a2b+3ab2+b3

(a-b)3  =  a3-3a2b+3ab2-b3

Expand :

Problem 1 :

(x + 7)2

Solution :

By comparing (x + 7)2 with (a + b)2, we get a  =  x and b  =  7

(x + 7)=  x2 + 2(x)(7) + 72

=  x2 + 14x + 49

Problem 2 :

(2x + 5)2

Solution :

Given , (2x + 5)2

Here a  =  2x and b  =  5.

(2x + 5)=  (2x)2 + 2(2x)(5) + 52

=  4x2 + 20x + 25

Problem 3 :

(6 + 5x)2

Solution :

Given , (6 + 5x)2

Here a  =  6 and b  =  5x

(6 + 5x)2  =  62 + 2(6)(5x) + (5x)2

= 25x2 + 60x + 36

Problem 4 :

(3a + 1)2

Solution :

Given , (3a + 1)2

Here a  =  3a and b  =  1

(3a + 1)2  =  (3a)2 + 2(3a)(1) + 12

=  9a2 + 6a + 1 

Problem 5 :

(1 + 2b)2

Solution :

Given , (1 + 2b)2

Here a  =  1 and b  =  2b

(1 + 2b)=  12 + 2(1)(2b) + (2b)2

=  4b2 + 4b + 1 

Problem 6 :

(3 – n)2

Solution :

Given , (3 – n)2

Here a  =  3 and b  =  n

(3 – n)=  32 - 2(3)(n) + (-n)2

=  n2 – 6n + 9

Problem 7 :

(3x – 2)2

Solution :

Given , (3x – 2)2

Here a  =  3x and b  =  2

(3x – 2)2 =  (3x)2 - 2(3x)(2) + (-2)2

=  9x2 – 12x + 4

Problem 8 :

(2x – 5)2

Solution :

Given , (2x – 5)2

Here a  =  2x and b  =  5

(2x – 5)2 =  (2x)2 – 2(2x)(5) + (-5)2

=  4x2 – 20x + 25

Problem 9 :

(4 – 3a)2

Solution :

Given , (4 – 3a)2

Here a  =  4 and b  =  3a

(4 – 3a)2 = 42 – 2(4)(3a) + (-3a)2

=  9a2 – 24a + 16 

Problem 10 :

(2x -3y)2

Solution :

Given , (2x -3y)2

Here a  =  2x and b  =  3y

(2x -3y)=  (2x)2 – 2(2x)(3y) + (-3y)2

=  4x2 – 12xy + 9y2 

Problem 11 :

(2x + 13) (2x – 13)

Solution :

Given , (2x + 13) (2x – 13)

We can compare (2x + 13) (2x – 13) with (a+b)(a-b).

(a+b)(a-b)  =  a2-b2

Here a  =  1 and b  =  2b

=  (2x)2 – (13)2

=  4x2 – 169

Problem 12 :

(m + n) (m – n)

Solution :

Given , (m + n) (m – n)

We can compare (m + n) (m – n) with (a+b)(a-b).

(a+b)(a-b)  =  a2-b2

=  m2 – n2

=  m2 – n2

Problem 13 :

(7x + 1) (7x – 1)

Solution :

Given , (7x + 1) (7x – 1)

We can compare (7x + 1) (7x – 1) with (a+b)(a-b).

(a+b)(a-b)  =  a2-b2

=  (7x)2  – 12

=  49x2 - 1

Problem 14 :

(a + 8) (a – 8)

Solution :

Given , (a + 8) (a – 8)

We can compare (a + 8) (a – 8) with (a+b)(a-b).

=  a2 – 82

=  a2 - 64

Problem 15 :

Expand : 

(p + 2q)

Solution :

Comparing (a + b)and (p + 2q)3, we get

a  =  p and b  =  2q

Substitute p for a and 2q for b. 

(p + 2q)3  =  p3 + 3(p2)(2q) + 3(p)(2q)2 + (2q)3

(p + 2q)3  =  p3 + 6p2q + 3(p)(4q2) + 8q3

(p + 2q)3  =  p3 + 6p2q + 12pq2 + 8q3

So, the expansion of (p + 2q)3 is

p3 + 6p2q + 12pq2 + 8q3

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 21, 24 02:20 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 89)

    Dec 20, 24 06:23 AM

    digitalsatmath78.png
    Digital SAT Math Problems and Solutions (Part - 89)

    Read More