Algebraic identities used in expanding binomials :
(a+b)2 = a2+2ab+b2
(a+b)2 = a2-2ab+b2
(a+b)3 = a3+3a2b+3ab2+b3
(a-b)3 = a3-3a2b+3ab2-b3
Expand :
Problem 1 :
(x + 7)2
Solution :
By comparing (x + 7)2 with (a + b)2, we get a = x and b = 7
(x + 7)2 = x2 + 2(x)(7) + 72
= x2 + 14x + 49
Problem 2 :
(2x + 5)2
Solution :
Given , (2x + 5)2
Here a = 2x and b = 5.
(2x + 5)2 = (2x)2 + 2(2x)(5) + 52
= 4x2 + 20x + 25
Problem 3 :
(6 + 5x)2
Solution :
Given , (6 + 5x)2
Here a = 6 and b = 5x
(6 + 5x)2 = 62 + 2(6)(5x) + (5x)2
= 25x2 + 60x + 36
Problem 4 :
(3a + 1)2
Solution :
Given , (3a + 1)2
Here a = 3a and b = 1
(3a + 1)2 = (3a)2 + 2(3a)(1) + 12
= 9a2 + 6a + 1
Problem 5 :
(1 + 2b)2
Solution :
Given , (1 + 2b)2
Here a = 1 and b = 2b
(1 + 2b)2 = 12 + 2(1)(2b) + (2b)2
= 4b2 + 4b + 1
Problem 6 :
(3 – n)2
Solution :
Given , (3 – n)2
Here a = 3 and b = n
(3 – n)2 = 32 - 2(3)(n) + (-n)2
= n2 – 6n + 9
Problem 7 :
(3x – 2)2
Solution :
Given , (3x – 2)2
Here a = 3x and b = 2
(3x – 2)2 = (3x)2 - 2(3x)(2) + (-2)2
= 9x2 – 12x + 4
Problem 8 :
(2x – 5)2
Solution :
Given , (2x – 5)2
Here a = 2x and b = 5
(2x – 5)2 = (2x)2 – 2(2x)(5) + (-5)2
= 4x2 – 20x + 25
Problem 9 :
(4 – 3a)2
Solution :
Given , (4 – 3a)2
Here a = 4 and b = 3a
(4 – 3a)2 = 42 – 2(4)(3a) + (-3a)2
= 9a2 – 24a + 16
Problem 10 :
(2x -3y)2
Solution :
Given , (2x -3y)2
Here a = 2x and b = 3y
(2x -3y)2 = (2x)2 – 2(2x)(3y) + (-3y)2
= 4x2 – 12xy + 9y2
Problem 11 :
(2x + 13) (2x – 13)
Solution :
Given , (2x + 13) (2x – 13)
We can compare (2x + 13) (2x – 13) with (a+b)(a-b).
(a+b)(a-b) = a2-b2
Here a = 1 and b = 2b
= (2x)2 – (13)2
= 4x2 – 169
Problem 12 :
(m + n) (m – n)
Solution :
Given , (m + n) (m – n)
We can compare (m + n) (m – n) with (a+b)(a-b).
(a+b)(a-b) = a2-b2
= m2 – n2
= m2 – n2
Problem 13 :
(7x + 1) (7x – 1)
Solution :
Given , (7x + 1) (7x – 1)
We can compare (7x + 1) (7x – 1) with (a+b)(a-b).
(a+b)(a-b) = a2-b2
= (7x)2
– 12
= 49x2 - 1
Problem 14 :
(a + 8) (a – 8)
Solution :
Given , (a + 8) (a – 8)
We can compare (a + 8) (a – 8) with (a+b)(a-b).
= a2 – 82
= a2 - 64
Problem 15 :
Expand :
(p + 2q)3
Solution :
Comparing (a + b)3 and (p + 2q)3, we get
a = p and b = 2q
Substitute p for a and 2q for b.
(p + 2q)3 = p3 + 3(p2)(2q) + 3(p)(2q)2 + (2q)3
(p + 2q)3 = p3 + 6p2q + 3(p)(4q2) + 8q3
(p + 2q)3 = p3 + 6p2q + 12pq2 + 8q3
So, the expansion of (p + 2q)3 is
p3 + 6p2q + 12pq2 + 8q3
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 21, 24 02:20 AM
Dec 21, 24 02:19 AM
Dec 20, 24 06:23 AM