Question 1 :
Differentiate f(x) = x/√(7 - 3x)
Solution :
u = x
u' = 1
v = √(7 - 3x)
v' = 1/2√(7 - 3x)(-3) ==> -3/2√(7 - 3x)==>-3/2√(7 - 3x)
f'(x) = [√(7 - 3x)(1) - x(-3/2√(7 - 3x))]/(√(7 - 3x))2
f'(x) = [√(7 - 3x) + (3x/2√(7 - 3x))]/(√(7 - 3x))2
f'(x) = [2(7 - 3x) + 3x)/2√(7 - 3x))]/(7 - 3x)
f'(x) = (14-6x+3x)/(2(7-3x)√(7-3x))
f'(x) = (14-3x)/[2(7-3x)√(7-3x)]
Question 2 :
Differentiate y = tan(cos x)
Solution :
y = tan(cos x)
Let u = cos x
Differentiate the function "u" with respect to "x"
du/dx = -sin x
y = tan u
Differentiate the function "y" with respect to "x".
dy/dx = sec2 u (du/dx)
dy/dx = sec2 (cos x)(-sin x)
dy/dx = -sin x sec2 (cos x)
Question 3 :
Differentiate y = sin2x/cos x
Solution :
u = sin2x ==> u' = 2 sin x cos x
v = cos x ==> v' = - sinx
dy/dx = (cos x(2 sin x cos x) - sin2x (- sinx)) / (cos2x)
dy/dx = (2 sin x cos2 x + sin3x) / (cos2x)
dy/dx = 2 sin x + (sin3x / cos2x)
= 2 sin x + tan2x sin x
= sin x (2 + tan2x)
dy/dx = sin x (1 + sec2x)
Question 4 :
Differentiate y = 5-1/x
Solution :
Let u = -1/x
du/dx = -1/x2
y = 5u
dy/dx = 5u (log 5) (du/dx)
= 5-1/x (log 5) ( -1/x2)
dy/dx = (-5-1/x log 5)/x2
Question 4 :
Differentiate y = √(1 + 2 tan x)
Solution :
Let u = (1 + 2 tan x)
du/dx = 0 + 2 sec2x ==> 2 sec2x
y = √u
dy/dx = (1/2√u) (du/dx)
dy/dx = (1/2√(1 + 2 tan x) )(2 sec2x)
dy/dx = (sec2x/√(1 + 2 tan x))
Question 5 :
Differentiate y = sin3x + cos3x
Solution :
dy/dx = 3 sin2x(cos x) + 3 cos2x(-sin x)
dy/dx = 3 sinx cos x (sin x - cos x)
Question 6 :
Differentiate y = sin2 (cos kx)
Solution :
Let u = cos kx
Differentiate the function "u" with respect to "x"
du/dx = -sin kx (k) ==> - k sin kx
y = sin2 u
Differentiate the function "y" with respect to "x"
dy/dx = 2 sin u cos u (du/dx)
= sin 2u (du/dx)
= sin (2 cos kx) (-k sin kx)
dy/dx = -k sin kx sin (2 cos kx)
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM
Dec 21, 24 02:19 AM