COMPOSITION OF FUNCTIONS WORKSHEET

Using the functions f and g given below, find f o g and g o f . Check whether  f o g = g o f .

Question 1 :

f(x) = x - 6, g(x) = x              Solution

Question 2 :

 f(x) = 2/x, g(x) = 2x2 - 1              Solution

Question 3 :

 f(x) = (x + 6)/3,  g(x) = 3 - x        Solution

Question 4 :

f(x) = 3 + x,  g(x) = x - 4          Solution

Question 5 :

f(x) = 4x2 - 1, g(x) = 1 + x          Solution

Question 6 :

Let f(x) = 1 - 2x and h(x) = f(g(x)). Fill in the table.

composition-of-function-ex2.png

Solution

Question 7 :

Let g(x) = 3x and h(x) = g(f(x)). Fill in the table.

composition-of-function-ex4.png

Solution

Question 8 :

Compare the quantity in column A with column B.

f(x) = 2x - 5 and g(x) = (1/2) (x + 5)

Column A

f(2)

Column B

g(f(2))

[A]The quantity in Column A is greater.

[B]The quantity in Column B is greater.

[C]The two quantities are equal.

[D]The relationship cannot be determined on the basis of the information supplied.

Solution

Question 9 :

Given 𝑓(𝑥)  = 5𝑥 - 2𝑏 while 𝑔(𝑥) = 4𝑏𝑥. If 𝑓[𝑔(1)] = 36, what is 𝑔(𝑓(1)) ?

Solution

Answer key

1)  f o g ≠ g o f

2)  f o g ≠ g o f

3)  f o g ≠ g o f

4)  f o g = g o f.

5)  f o g ≠ g o f.

6)  

composition-of-function-ex3s.png

7)  

composition-of-function-ex4s.png

8)  [B]The quantity in Column B is greater is the correct answer.

9)  8

Question 1 :

f(x) = 3x + 2 and g(x) = 6x - k

Solution

Question 2 :

f(x) = 2x - k and g(x) = 4x + 5

Solution

Question 3 :

If f(x) = x2 - 3x - 1 and g(x) = 1 - x, what is the value of (f o g)(-2)

A) -3    B) -1     C) 1     D) 3

Solution

Question 4 :

If f(x) = (1 - 5x)/2 and g(x) = 2 - x, what is the value of f(g(3)) ?

A) -7     B) -2    C) 2      D) 3

Solution

Question 5 :

If f = {(-4, 12)(-2, 4) (2, 0) (3, 3/2)} and g = { (-2, 5) (0, 1) (4, -7) (5, -9) }, what is the value of (g o f) (2)

A) -9     B) -7    C) 1      D) 5

Solution

Question 6 :

The function f satisfies f(-1) = 8 and f(1) = -2. A function g(2) satisfies g(2) = 5 and g(-1) = 1, what is the value of f(g(-1))

A) -9     B) -7    C) 1      D) 5

Solution

Question 7 :

g(x) = ax2 + 24

for the function g defined above, a is constant  and g(4) = 8, what is the value of g(-4) ?

a)  8   b)  0   c)  -1    d)  -8

Solution

Question 8 :

If f(x) = √x + 2 and g(x) = -(x - 1)2, which of the following is equivalent to g(f(a)) - 2f(a) ?

Solution

Question 9 :

The table above gives values of f and g at selected values of x. What is the value of g(f(2)) ?

composition-of-two-fun-q1

Solution

Answer Key

1)  k = -5

2)  k = -5/3

3)  (f o g)(-2) = -1

4)  f(g(3)) = 3

5)  (g o f) (2) = 1

6)  f(g(-1)) is 2

7)  8

8)   -a - 4√a - 3

9)   g(f(2)) is 6

Question 1:

Let A, B, C  N and a function f : A -> B be defined by f(x) = 2x + 1 and g : B -> C be defined by g(x) = x2 . Find the range of f o g and g o f.       Solution

Question 2 :

Let f(x) = x2 - 1 . Find (i) f o f (ii) f o f o f      Solution

Question 3:

If f : R -> R and g : R -> R are defined by f(x) = x5 and g(x) = x4 then check if f, g are one-one and f o g is one-one?       Solution

Answer Key

1)  Range of f o g {y | y = 2x2 + 1 and x ∊ N}

Range of f o g {y | y = (2x + 1)2 and x ∊ N}

2)  i) f o f  =  x4 - 2x2 

ii)  (x4 - 2x2)2 - 1

3)  fog is not one to one function.

Consider the functions f(x), g(x) and h(x) as given below. Find (f o g) o h and f o (g o h) in each case and also show that (f o g) o h = f o (g o h).

Question 1 :

f(x) = x - 1 , g(x) = 3x + 1 and h(x) = x2

Solution

Question 2 :

f(x) = x2, g(x) = 2x and h(x) = x + 4

Solution

Question 3 :

f(x) = x - 4, g(x) = x2 and h(x) = 3x - 5

Solution

Question 4 :

Given f(x) = -8x2, g(x) = -3x + 9 and h(x) = √x, find [(f + g)o h] (x)

Solution

Question 5 :

Let f(x) = 3 - x2 and h(x) = f(g(x)). Fill the table.

composition-of-three-function-q1

Solution

Question 6 :

Fill in the following table, given that h(x) = f(g(x))

composition-of-three-function-q2.png

Solution

Question 7 :

Given 𝑓(𝑥)  = 5𝑥 - 2𝑏 while 𝑔(𝑥) = 4𝑏𝑥. If 𝑓(𝑔(1)) = 36, what is 𝑔(𝑓(1)) ?

Solution

Answer Key

1)  f o (g o h) = (f o g) o h

2)  f o (g o h) = (f o g) o h

3)  f o (g o h) = (f o g) o h

4)  -8x - 3√x - 9

5)  

composition-of-three-function-q1s.png

6)  

composition-of-three-function-q2s.png

7)  b = 2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 134)

    Mar 31, 25 12:13 AM

    digitalsatmath143.png
    Digital SAT Math Problems and Solutions (Part - 134)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Mar 31, 25 12:12 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 133)

    Mar 30, 25 09:26 AM

    digitalsatmath142.png
    Digital SAT Math Problems and Solutions (Part - 133)

    Read More