Problem 1 :
Expand cos(A + B + C). Hence prove that
cosAcosB cosC = sinAsinB cosC + sinB sinC cosA + sinC sinAcos B, if A + B + C = π/2
Solution :
cos(A + B + C) = cos ( (A + B) + C )
= cos (A + B) cos C - sin (A + B) sin C
= (cos A cos B - sin A sin B) cos C - (sin A cos B - cos A sin B) sin C
cos(A + B + C) = cos A cos B cos C - sin A sin B cos C - sin A cos B sin C - cos A sin B sin C
If A + B + C = π/2
cos π/2 = cos A cos B cos C - sin A sin B cos C - sin A cos B sin C - cos A sin B sin C
The value of cos π/2 is 0.
So, cosAcosB cosC = sinAsinB cosC + sinB sinC cosA + sinC sinAcos B.
Hence proved.
Problem 2 :
Prove that
(i) sin(45° + θ) − sin(45° − θ) = √2 sinθ.
(ii) sin(30° + θ) + cos(60° + θ) = cos θ.
Solution :
(i) sin(45° + θ) − sin(45° − θ) = √2 sinθ :
L.H.S
= sin(45° + θ) − sin(45° − θ)
= sin 45°cos θ + cos 45°sinθ-(sin 45°cosθ - cos 45°sin θ)
= sin 45°cos θ + cos 45°sinθ - sin 45°cosθ + cos 45°sin θ
= 2cos 45°sin θ
= 2(1/√2) sin θ
= √2 sin θ ----> R.H.S
Hence proved.
(ii) sin(30° + θ) + cos(60° + θ) = cos θ :
L.H.S
sin(30° + θ) + cos(60° + θ)
= sin 30°cos θ + cos 30°cos θ + cos 60°cos θ - sin 60°sin θ
= (1/2) cos θ + (√3/2) cos θ + (1/2) cos θ - (√3/2) sin θ
= (1/2) cos θ + (1/2) cos θ
= 2 cos θ / 2
= cos θ
Hence proved.
Problem 3 :
If a cos(x + y) = b cos(x − y), show that (a + b) tanx = (a − b) cot y.
Solution :
a cos(x + y) = b cos(x − y)
a (cos x cos y - sin x sin y) = b (cos x cos y + sin x sin y)
a cos x cos y - a sin x sin y = b cos x cos y + b sin x sin y
a cos x cos y - b cos x cos y = b sin x sin y + a sin x sin y
Factor out cos x cos y on the left side, in the right side factor out sin x sin y
(a - b) cos x cos y = (a + b) sin x sin y
Divide both sides by cos x sin y
(a - b)(cosx cosy/cosx siny) = (a + b)(sinx siny/cosx siny)
(a - b) cot y = (a + b) tan x
Hence proved.
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 22, 25 02:43 AM
Jan 20, 25 09:31 PM
Jan 20, 25 09:27 PM