Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.
Problem 1 :
If A + B + C = 180°, prove that
sin2A + sin2B + sin2C = 2 + 2cosAcosBcosC
Solution :
sin2A + sin2B + sin2C :
= (1 - cos2A)/2 + (1 - cos2B)/2 + (1 - cos2B)/2
= 1/2 - (cos2A)/2 + 1/2 - (cos2B)/2 + 1/2 - (cos2B)/2
= 3/2 - (1/2)[cos2A + cos2B + cos2C]
= 3/2 - (1/2)[2cos(A + B)cos(A - B) + 2cos2C - 1]
= 3/2 - (1/2)[2cos(180 - C)cos(A - B) + 2cos2C - 1]
= 3/2 - (1/2)[-2cosCcos(A - B) + 2cos2C - 1]
= 3/2 - [-cosCcos(A - B) + cos2C] + 1/2
= 3/2 - [-cosCcos(A - B) + cos2C] + 1/2
= 3/2 + 1/2 + cosC[cos(A - B) - cosC]
= 2 + cosC[cos(A - B) - cos(180 - (A + B)]
= 2 + cosC[cos(A - B) + cos(A + B)]
Now let us use the formula for cosC - cosD.
= 2 + cosC[2cosAcosB]
= 2 + 2cosAcosBcosC
Problem 2 :
If A + B + C = 180°, prove that
sin2A + sin2B - sin2C = 2sinAsinBcosC
Solution :
sin2A + sin2B - sin2C :
= (1 - cos2A)/2 + (1 - cos2B)/2 - (1 - cos2C)/2
= 1/2 - (1/2)[cos2A + cos2B - cos2C]
= 1/2 - (1/2)[2cos(A + B)cos(A - B) - cos2C]
= 1/2 - (1/2)[2cos(180 - C)cos(A - B) - cos2C]
= 1/2 - (1/2)[-2cosCcos(A - B) - (2cos2C - 1)]
= 1/2 + cosCcos(A - B) + cos2C - 1/2
= cosC[cos(A - B) + cosC]
= cosC[cos(A - B) + cos(180 - (A + B)]
= cosC[cos(A - B) - cos(A + B)]
= cosC[2sinAsinB]
= 2sinAsinBcosC
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM
Dec 21, 24 02:19 AM