Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.
Here we are going to see some examples to show how to solve conditional trigonometric identities problems.
Example 1 :
If A + B + C = 180°, prove that
tan(A/2)tan(B/2) + tan(B/2)tan(C/2) + tan(C/2)tan(A/2) = 1
Solution :
A + B + C = 180
A + B = 180 - C
A/2 + B/2 = 90 - C/2
tan(A/2 + B/2) = tan[90 - (C/2)]
tan(A/2 + B/2) = cot(C/2) -----(1)
Formula :
tan(A + B) = tan A + tan B / (1 - tan A tan B)
Use the above formula on the left side of (1).
(1)----->
[tan(A/2) + tan(B/2)] / [(1 - tan(A/2)tan(B/2)] = 1/tan(C/2)
Take reciprocal on both sides
[1 - tan(A/2)tan(B/2)] / [tan(A/2) + tan(B/2)] = tan (C/2)
1 - tan(A/2)tan(B/2) = tan(C/2)[tan(A/2) + tan(B/2)]
1 - tan(A/2)tan(B/2) = tan(A/2)tan(C/2)+tan(B/2)tan(C/2)
1 = tan(A/2)tan(C/2)+tan(B/2)tan(C/2)+tan(A/2)tan(B/2)
Example 2 :
If A + B + C = 180°, prove that
sinA + sinB + sinC = 4cos A/2 cos B/2 cos C/2
Solution :
sinA + sinB + sinC :
= 2sin(A + B)/2cos(A - B)/2 + sinC
= 2sin(180 - C)/2 cos (A - B)/2 + sin C
= 2 sin C/2 cos (A - B)/2 + 2 sin C/2 cos C/2
= 2 sin C/2 [cos (A - B)/2 + sin C/2]
= 2 sin C/2 [cos (A-B)/2 + sin (180-(A+B))/2]
= 2 sin C/2 [cos (A-B)/2 + sin (90-(A+B)/2)]
= 2 sin C/2 [cos (A-B)/2 + cos (A+B)/2]
= 2 sin C/2 [2 cos A/2 cos B/2]
= 4 cos A/2 cos B/2 sin C/2
Example 3 :
If A + B + C = 180°, prove that
sin(B + C - A) + sin(C + A − B) + sin(A + B - C) = 4sinAsinB sinC.
Solution :
A + B + C = 180
A + B = 180 - C |
B + C = 180 - A |
C + A = 180 - B |
sin(B + C - A) + sin(C + A - B) + sin(A + B - C) :
= sin(180 - A - A) + sin(180 - B - B) + sin(180 - C - C)
= sin(180 - 2A) + sin(180 - 2B) + sin(180 - 2C)
= sin 2A + sin 2B + sin 2C
= 2sin(A + B)cos(A - B) + sin2C
= 2sin(180 - C)cos(A - B) + 2sinCcosC
= 2sinCcos(A - B) + 2sinCcosC
= 2sinC[cos(A - B) + cosC]
= 2sinC[cos(A - B) + cos(180 - (A + B)]
= 2sinC[cos(A - B) - cos(A + B)]
= 2sinC[-2sinAsin(-B)]
= 4sinCsinAsinB
= 4sinAsinBsinC
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 23, 24 10:01 AM
Nov 23, 24 09:45 AM
Nov 21, 24 06:13 AM