Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.
Abbreviations used :
L.H.S -----> Left hand side
R.H.S -----> Right hand side
Problem 1 :
If A + B + C = 180°, prove that
sin2A + sin2B + sin2C = 4sinAsinBsin C
Solution :
L.H.S :
= sin2A + sin2B + sin2C
Use the formula of (sin C + sin D).
= 2sin[(2A + 2B)/2]cos[(2A - 2B)/2] + sin2C
= 2sin(A + B)cos(A - B) + sin2C -----(1)
A + B + C = 180°
A + B = 180 - C
sin(A + B) = sin(180 - C) = sinC
(1)-----> = 2sinCcos(A - B) + 2sinCcosC
= 2sinC[cos(A - B) + cosC]
= 2sinC{cos(A - B) + cos[180 - (A + B)]}
= 2sinC{cos(A - B) + cos(A + B)} -----(2)
cosC - cosD = -2sin(C + D)/2sin(C - D)/2
Here C = A - B and D = A + B
C + D = A - B + A + B = 2A
C - D = A - B - A - B = -2B
(2)-----> = 2sinC[-2sin(2A/2)sin(-2B/2)]
= 2sinC[2sinAsinB]
= 4sinAsinBsinC
= R.H.S
Problem 2 :
If A + B + C = 180°, prove that
cosA + cosB - cosC = -1 + 4cos(A/2)cos(B/2)sin(C/2)
Solution :
L.H.S :
= cosA + cosB - cosC
= 2cos(A + B)/2cos(A - B)/2 - cosC
= 2cos(180 - C)/2cos(A - B)/2 - cosC
= 2cos[90 - (C/2)]cos(A - B)/2 - cosC
= 2sin(C/2)cos(A - B)/2 - [1 - 2sin2(C/2)]
= 2sin(C/2)cos(A - B)/2 - 1 + 2sin2(C/2)
= -1 + 2sin(C/2)cos(A - B)/2 + 2sin2(C/2)
= -1 + 2sin(C/2){cos(A - B)/2 + sin[180 - (A + B)]/2}
= -1 + 2sin(C/2){cos(A - B)/2 + sin[90 - (A + B)/2]}
= -1 + 2sin(C/2)[cos(A - B)/2 + cos(A + B)/2)] -----(1)
Use the formula of (cosC + cosD).
Here C = (A - B) / 2 and D = (A + B)/2
C + D = 2A/2 = A
C - D = -2B/2 = -B
(1)-----> = -1 + 2sin(C/2)[2cos(A/2)cos(-B/2)]
= -1 + 4sin(C/2)[cos(A/2)cos(B/2)]
= -1 + 4cos(A/2)cos(B/2)sin(C/2)
= R.H.S
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 23, 24 10:01 AM
Nov 23, 24 09:45 AM
Nov 21, 24 06:13 AM