(1) If A + B + C = 180°, prove that
(i) sin 2A + sin2B + sin2C = 4 sin A sin B sin C
(ii) cos A + cos B − cos C = −1 + 4cos(A/2)cos(B/2)sin(C/2)
(iii) sin2 A + sin2 B + sin2 C = 2 + 2cosAcosB cosC
(iv) sin2 A + sin2 B − sin2 C = 2 sin A sin B cos C
(v) tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2 = 1
(vi) sinA + sinB + sinC = 4cos A/2 cos B/2 cos C/2
(vii) sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4sinAsinB sinC. Solution
(2) If A + B + C = 2s, then prove that sin(s − A) sin(s − B) + sins sin(s − C) = sin A sin B. Solution
(3) If x + y + z = xyz, then prove that
(2x/1 − x2) + (2y/1 − y2) + (2z/1 − z2) = (2x/1 − x2) (2y/1 − y2) (2z/1 − z2) Solution
(4) If A + B + C = π/2, prove the following
(i) sin 2A + sin2B + sin2C = 4cosAcosB cosC Solution
(ii) cos 2A + cos2B + cos2C = 1 + 4sinAsinB cosC
Solution
(5) If triangle ABC is a right triangle and if ∠A = π/2, then prove that
(i) cos2 B + cos2 C = 1
(ii) sin2 B + sin2 C = 1
(iii) cosB − cosC = −1 + 2 √2 cos B/2 sin C/2 Solution
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 23, 24 10:01 AM
Nov 23, 24 09:45 AM
Nov 21, 24 06:13 AM