CONGRUENT TRIANGLES ON A COORDINATE PLANE WORKSHEET

Problem 1 :

In the diagram given below, prove that ΔABC  ≅  ΔFGH.

Problem 2 :

In the diagram given below, prove that ΔABC  ≅  ΔDEF

Problem 3 :

In the diagram given below, prove that ΔOPM  ≅  ΔMNP

Answers

1. Answer :

Because AB = 5 in triangle ABC and FG = 5 in triangle FGH, 

AB  ≅  FG.

Because AC = 3 in triangle ABC and FH = 3 in triangle FGH, 

AC  ≅  FH.

Use the distance formula to find the lengths of BC and GH. 

Length of BC : 

BC  =  √[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  B(-7, 0) and (x2, y2)  =  C(-4, 5)

BC  =  √[(-4 + 7)2 + (5 - 0)2]

BC  =  √[32 + 52]

BC  =  √[9 + 25]

BC  =  √34

Length of GH : 

GH  =   √[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  G(1, 2) and (x2, y2)  =  H(6, 5)

GH  =  √[(6 - 1)2 + (5 - 2)2]

GH  =  √[52 + 32]

GH  =  √[25 + 9]

GH  =  √34

Conclusion :

Because BC = √34 and GH = √34,

BC  ≅  GH

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

ΔABC  ≅  ΔFGH

2. Answer :

From the diagram given above, we have

A(-3, 3), B(0, 1), C(-3, 1), D(0, 6), E(2, 3), F(2, 6)

Because AC = 2 in triangle ABC and DF = 2 in triangle DEF, 

AC  ≅  DF.

Because BC = 3 in triangle ABC and EF = 3 in triangle DEF, 

BC  ≅  EF.

Use the distance formula to find the lengths of BC and GH. 

Length of AB : 

AB  =   √[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  A(-3, 3) and (x2y2)  =  B(0, 1)

AB  =  √[(0 + 3)2 + (1 - 3)2]

AB  =  √[32 + (-2)2]

AB  =  √[9 + 4]

AB  =  √13

Length of DE : 

DE  =  √[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  D(0, 6) and (x2, y2)  =  E(2, 3)

DE  =  √[(2 - 0)2 + (3 - 6)2]

DE  =  √[22 + (-3)2]

DE  =  √[4 + 9]

DE  =  √13

Conclusion :

Because AB = √13 and DE = √13,

AB  ≅  DE

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

ΔABC  ≅  ΔDEF 

3. Answer :

PM is the common side for both the triangles OPM and MNP. 

Because OP = 6 in triangle OPM and PN = 6 in triangle MNP, 

OP  ≅  PN.

Use the distance formula to find the lengths of OM and MN. 

Length of OM : 

OM  =   √[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  O(0, 0) and (x2, y2)  =  M(3, 3)

OM  =  √[(3 - 0)2 + (3 - 0)2]

OM  =  √[32 + 32]

OM  =  √[9 + 9]

OM  =  √18

Length of MN : 

MN  =   √[(x2 - x1)2 + (y2 - y1)2]

Here (x1y1)  =  M(3, 3) and (x2, y2)  =  N(6, 6)

MN  =  √[(6 - 3)2 + (6 - 3)2]

MN  =  √[32 + 32]

MN  =  √[9 + 9]

MN  =  √18

Conclusion :

Because  OM = √18 and MN = √18,

OM  ≅  MN

All the three pairs of corresponding sides are congruent. By SSS congruence postulate, 

ΔOPM  ≅  ΔMNP

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 100)

    Jan 14, 25 12:34 AM

    Digital SAT Math Problems and Solutions (Part - 100)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 14, 25 12:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Best Way to Learn Mathematics

    Jan 12, 25 11:03 PM

    Best Way to Learn Mathematics

    Read More