CONSECUTIVE INTERIOR ANGLES THEOREM

Consecutive Interior Angles :

If two lines are cut by a transversal, the pair of angles on the same side of the transversal and inside the two lines are called consecutive interior angles.

In the figure above, ∠4 and ∠5 are consecutive interior angles, and also ∠3 and ∠6 are consecutive angles.

Consecutive Interior Angles Theorem :

If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary. 

Given : m||n, p is transversal. 

Prove : ∠4 and ∠5 are supplementary and ∠3 and ∠6 are supplementary. 

Statement

m||n, p is transversal. 

Reason

Given

∠1 & ∠4 - linear pair

∠2 & ∠3 - linear pair


Definition of linear pair

∠1 & ∠4 - Supplementary

m∠1 + m∠4  =  180°

∠2 & ∠3 - Supplementary

m∠2 + m∠3  =  180°



Supplementary Postulate

∠1  ∠5 and ∠2  ∠6

Corresponding Angles Theorem

∠4 & ∠5 - Supplementary

∠3 & ∠6 - Supplementary


Substitution Property

Solved Problems

Problem 1 :

In the figure shown below, m∠3 = 105°. Find the measure of ∠6.

Solution :

In the figure above, lines m and n are parallel and p is transversal.

By Theorem, ∠3 and ∠6 are supplementary. 

m∠3 + m∠6  =  180°

Substitute m∠3 = 105°. 

105° + m∠6  =  180°

Subtract 105° from each side. 

m∠6  =  75°

Problem 2 :

In the figure shown below, m∠3 = 102°. Find the measures ∠6, ∠12 and ∠13.

Solution :

In the figure above, lines m and n are parallel, p and q are parallel.

By Theorem, ∠3 and ∠6 are supplementary. 

m∠3 + m∠6  =  180°

Substitute m∠3 = 102°. 

102° + m∠6  =  180°

Subtract 102° from each side. 

m∠6  =  78°

By Theorem, ∠3 and ∠12 are supplementary. 

m∠3 + m∠12  =  180°

Substitute m∠3 = 102°. 

102° + m∠12  =  180°

Subtract 102° from each side. 

m∠12  =  78°

By Theorem, ∠12 and ∠13 are supplementary. 

m∠12 + m∠13  =  180°

Substitute m∠12 = 78°. 

78° + m∠13  =  180°

Subtract 78° from each side. 

m∠13  =  102°

Therefore, 

m∠6  =  78°

m∠12  =  78°

m∠13  =  102°

Problem 3 :

In the figure shown below, lines m and n are parallel and p is transversal. Find the value of x. 

Solution :

In the figure above, lines m and n are parallel and p is transversal.

By Theorem, 5x° and (3x + 28)° are supplementary.

5x° + (3x + 28)°  =  180°

5x + 3x + 28  =  180

8x + 28  =  180

Subtract 28 from each side. 

8x  =  152

Divide each side by 8.

x  =  19

Problem 4 :

Using a 3rd parallel Line – Auxiliary Line, find the value of x. 

Solution :

In the figure above, a° and 50° are corresponding angles and they are equal.

a°  =  50°

By Theorem, b° and 100° are supplementary. 

b° + 100°  =  180°

Subtract 100° from each side. 

b°  =  80°

In the figure above, 

x  =  a + b

=  50 + 80

=  130

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More