(1) Write in polar form of the following complex numbers
(i) 2 + i 2√3
(ii) 3 - i √3
(iii) −2 − i2
(iv) (i - 1) / [cos (π/3) + i sin (π/3)] Solution
(2) Find the rectangular form of the complex numbers
(i) [cos (π/6) + i sin (π/6)] [cos (π/12) + i sin (π/12)]
(ii) [cos (π/6) - i sin (π/6)]/2 [cos (π/3) + i sin (π/3)]
(3) If (x1 + iy1) (x2 + iy2) (x3 + iy3) ................(xn + iyn) = a + ib show that
(i) (x12 + y12) (x22 + y22)............ (xn2 + yn2) = a2 + b2
(4) If (1 + z)/(1 - z) = cos 2θ + i sin 2θ, show that z = i tan θ Solution
(5) If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that
(i) cos 3α + cos 3β + cos 3γ = 3 cos (α + β + γ) and
(ii) sin 3α + sin 3β + sin 3γ = 3 sin (α + β + γ)
(6) If z = x + iy and arg [(z - i)/(z + 2)] = π/4, show that x2 + y2 + 3x − 3y + 2 = 0. Solution
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 23, 24 10:01 AM
Nov 23, 24 09:45 AM
Nov 21, 24 06:13 AM