CONVERTING COMPLEX NUMBERS TO POLAR FORM

Let r and θ be polar coordinates of the point P(x, y) that corresponds to a non-zero complex number z = x + iy . The polar form or trigonometric form of a complex number P is 

z = r (cos θ + i sin θ)

The value "r" represents the absolute value or modulus of the complex number z .

The angle θ is called the argument or amplitude of the complex number z denoted by θ = arg(z).

The angle θ has an infinitely many possible values, including negative ones that differ by integral multiples of 2π . Those values can be determined from the equation tan θ  = y/x

To find the principal argument of a complex number, we may use the following methods

1st quadrant

2nd quadrant

3rd quadrant

4th quadrant

θ  =  α

θ  =  π - α

θ  =  - π + α 

θ  =  -α

The capital A is important here to distinguish the principal value from the general value. Evidently, in practice to find the principal angle θ, we usually compute α = tan−1 |y/x| and adjust for the quadrant problem by adding or subtracting α  with π appropriately

arg z = Arg z + 2nπ , n ∈ z.

Write the following complex numbers in polar form. 

Problem 1 :

2 + i 2√3

Solution :

2 + i 23  =  r (cos θ + i sin θ)

r = √22 + (23)2

r = √(4+12)

r = √16

r = 4

α  = tan-1|y/x|

 α  =  tan-1 (23/2)

 α  =  tan-1 (3)

α  =  π/3

Since the complex number 2 + i 23 lies in the first quadrant, has the principal value θ  =  α.

So, the polar form of the given complex number is

Problem 2 :

3 - i 3

Solution :

3 - i 3  =  r (cos θ + i sin θ)

r = √32 + (-3)2

r = √(9+3)

r = √12

r = 2√3

α  = tan-1|y/x|

 α  =  tan-1 |-3/3|

 α  =  tan-1 (1/3)

α  =  π/6

Since the complex number 3-i3 lies in the fourth quadrant, has the principal value θ  =  -α.

θ  =  -π/6

3 - i 3  =  2√3 (cos (-π/6) + i sin (-π/6)

3 - i 3  =  2√3 (cos (π/6) - i sin (π/6))

So, the polar form of the given complex number is

Problem 3 :

-2 - i2

Solution :

−2 − i2  =  r (cos θ + i sin θ)

   r  =  (-2)2 + (-2)2

r = √(4+4)

r = 2√2

α  = tan-1|y/x|

 α  =  tan-1 |2/2|

 α  =  tan-1 (1)

α  =  π/4

Since the complex number −2 − i2 lies in the third quadrant, has the principal value θ  =  -π+α.

θ  =  -π + π/4

θ  =  (-4π+π)/4

θ  =  -3π/4

−2 − i2  =  2√3 (cos ( -3π/4) + i sin ( -3π/4))

So, the polar form of the given complex number is

Problem 4 : 

(i - 1) / [cos (π/3) + i sin  (π/3)]

Solution :

=  (i - 1) / [cos (π/3) + i sin  (π/3)]

=  (i - 1) / [(1/2) + i (3/2)]

=  2(i - 1) / (1 + i3)

=  (2i - 2) / (1 + i√3)

r  =  √[(4 + 2√3 + 4 - 2√3)/4]

r  =  √2

α  = tan-1|(√3+1)/(√3-1)|

 α  =  tan-1 (5π/12

tan 75  =  tan (30 + 45)

=  (tan 30 + tan 45)/(1 - tan 30 tan 45)

=  [(1/√3) + 1]/[1 - (1/√3)1]

=  (1 + √3)/(√3 - 1)

=  (√3 + 1)/(√3 - 1)

(i - 1) / [cos (π/3) + i sin  (π/3)]

  =  √2 (cos (5π/12 + i sin (5π/12)) 

So, the polar form of the given complex number is

Problem 5 :

(3/2) - i(√3/2)

Solution :

(3/2) - i(√3/2)  =  r (cos θ + i sin θ)

r = (3/2)2 + (3/2)2

(9/4) + (3/4)

(9 + 3)/4

√(12/4)

r = 3

(3/2) - i(√3/2)  = 3 (cos θ + i sin θ)

3 cos θ = (3/2) and √3 sin θ = √3/2

cos θ = √3/2 and sin θ = 1/2

both sin θ and cos θ are positive, the required angle lies in the first quadrant.

θ = π/6

(3/2) - i(√3/2)  = 3 (cos π/6 + i sin π/6)

Problem 6 :

-1 - i√3

Solution :

-1 - i√3 =  r (cos θ + i sin θ)

r = (-1)2 + (-3)2

√1 + 3

4

r = 2

-1 - i√3  = 2 (cos θ + i sin θ)

2 cos θ = -1 and 2 sin θ = -√3

cos θ = -1/2 and sin θ = -√3/2

both sin θ and cos θ are positive, the required angle lies in the third quadrant.

θ = -π + a

= -π + (π/3)

= (-3π + π)/3

= -2π/3

-1 - i√3 = 2 (cos (-2π/3) + i sin (-2π/3))

Problem 7 :

-2√3 - 2i

Solution :

-2√3 - 2i =  r (cos θ + i sin θ)

r = √(-2√3)2 + (-2)2

√12+4

√16

r = 4

-2√3 - 2i  = 4 (cos θ + i sin θ)

4 cos θ = -2√3 and 4 sin θ = -2

cos θ = -√3/2 and sin θ = -1/2

both sin θ and cos θ are positive, the required angle lies in the third quadrant.

θ = -π + a

= -π + (π/6)

= -5π/6

-2√3 - 2i  = 2 (cos (-5π/6) + i sin (-5π/6))

Problem 8 :

2i

Solution :

2i =  r (cos θ + i sin θ)

r = √02 + 22

√4

r = 2

2i  = 2 (cos θ + i sin θ)

2 cos θ = 0 and 2 sin θ = 2

cos θ = 0 and sin θ = 2/2

cos θ = 0 and sin θ = 1

both sin θ and cos θ are positive, the required angle lies in the first quadrant.

θ = a

= π/2

2i  = 2 (cos (π/2) + i sin (π/2))

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 8)

    Jan 30, 25 09:48 AM

    AP Calculus AB Problems with Solutions (Part - 8)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 29, 25 06:00 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 105)

    Jan 29, 25 05:52 AM

    digitalsatmath106.png
    Digital SAT Math Problems and Solutions (Part - 105)

    Read More