CRAMER'S RULE OF SOLVING SIMULTANEOUS EQUATIONS

Let us consider the following system of three equations with three unknowns x, y and z. 

a11x + a12y + a13z  =  b1

a21x + a22y + a23z  =  b2

a31x + a32y + a33z  =  b1

Now, we can write the the following determinants using the above equations. 

Then, Cramer’s rule to find the values of x, y and z :

x  =  Δ1

y  =  Δ2

z  =  Δ3

If Δ  =  0, the system is inconsistent and it has solution. 

Example 1 :

Solve the following system of linear equations using Cramer’s rule:

5x − 2y + 16  =  0

x + 3y − 7  =  0

Solution :

5x − 2y  =  -16 ------(1) 

x + 3y  =  7 ------(2) 

By Cramer's rule, 

x  =  Δ1/Δ  =  -34/17  =  -2

y  =  Δ2/Δ  =  51/17  =  3

So, the values of x and y are 2 and 3 respectively.

Example 2 :

Solve the following system of linear equations using Cramer’s rule :

(3/x) + 2y  =  12

(2/x) + 3y  =  13

Solution :

Let 1/x  =  x1.

Then, 

3x1 + 2y  =  12

2x1 + 3y  =  13

By Cramer's rule, 

x1  =  Δ1/Δ  =  10/5  =  2

1/x  =  2 -----> x  =  1/2

y  =  Δ2/Δ  =  15/5  =  3

So, the values of x and y are 1/2 and 3 respectively.

Example 3 :

Solve the following system of linear equations using Cramer’s rule :

3x + 3y − z  =  11

2x − y + 2z  =  9

4x + 3y + 2z  =  25

Solution :

Δ  =  3(-2-6) - 3(4-8) - 1(6+4)

  =  3(-8) - 3(-4) - 1(10)

  =  -24 + 12 - 10

  =  -34 + 12

  =  -22

Δ=  11(-2-6) - 3(18-50) - 1(27+25)

  = 11(-8) - 3(-32) - 1(52)

=  -88 + 96 - 52

=  -140 + 96

Δ1  =  -44

Δ=  3(18 - 50) - 11(4 - 8) - 1(50 - 36)

  =  3(-32) - 11(-4) - 1(14)

  =  -96 + 44 - 14

  =  -110 + 44

Δ =  -66

Δ=  3(-25 - 27) - 3(50 - 36) + 11(6 + 4)

  =  3(-52) - 3(14) + 11(10)

  =  -156 - 42 + 110

  =  -198 + 110

Δ =  -88

By Cramer's rule, 

x  =  Δ1/Δ  =  -44/(-22)  =  2

y  =  Δ2/Δ  =  -66/(-22)  =  3

z  =  Δ3/Δ  =  -88/(-22)  =  4

So, the values of x, y and z are 2, 3 and 4 respectively.

Example 4 :

Solve the following system of linear equations using Cramer’s rule :

(3/x) - (4/y) - (2/z) - 1  =  0

(1/x) + (2/y) + (1/z) - 2  =  0

(2/x) - (5/y) - (4/z) + 1  =  0

Solution :

Let 1/x  =  a, 1/y  =  b and 1/z  =  c

3a - 4b + 2c  =  1 -----(1)

a + 2b + c  =  2 -----(2)

2a - 5b - 4c  =  -1 -----(3)

Δ  =  3(-8+5) + 4(-4-2) - 2(-5-4)

  =  3(-3) + 4(-6) - 2(-9)

  =  -9 - 24 + 18

Δ  =  -15

Δ=  1(-8+5) + 4(-8+1) -2(-10+2)

  =  1(-3) + 4(-7) - 2(-8)

  =  -3 - 28 + 16

Δ =  -15

Δ2  =  3(-8+1) - 1(-4-2) - 2(-1-4)

  =  3(-7) - 1(-6) - 2(-5)

  =  -21 + 6 + 10

  =  -21 + 16

 Δ =  -5

Δ=  3(-2+10) + 4(-1-4) + 1(-5-4)

  =  3(8) + 4(-5) + 1(-9)

  =  24 - 20 - 9

  =  -5

Δ =  -5

By Cramer's rule, 

a  =  Δ1/Δ  =  -15/(-15)  =  1

b  =  Δ2/Δ  =  -5/(-15)  =  1/3

c  =  Δ3/Δ  =  -5/(-15)  =  1/3

Then, 

x  =  1/a  =  1/1  =  1

y  =  1 / (1/3)  =  3

z  =  1 / (1/3)  =  3

So, the values of x, y and z are 1, 3 and 3 respectively. 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More