DECILES

Deciles are the values which divide a given set of values into 10 equal parts. 

The points of sub-divisions being 

D1, D2, D3, D4, ................ D99

D1 is the value for which one-hundredth of the observations are less than are equal to D1 and the remaining ninety-nine hundredths observations are greater than or equal to D1, once the values are arranged in ascending order of magnitude.  

Methods to Find Deciles

Method 1 (Unclassified Data) : 

For unclassified data, formula to find dth decile is given by 

(n + 1)dth value

Here, d = 1/10, d = 2/10, d = 3/10, ...... p = 9/10 for D1, D2, D3, ........... D9 respectively. 

Method 2 (Classified Data or Grouped Frequency Distribution) : 

In case of grouped frequency distribution, we consider the following formula for computation of deciles.

Here, d = 1/10, d = 2/10, p = 3/10,......p = 9/10 for d1, d2, d3............ drespectively. 

Moreover

l1  =  Lower class boundary of the decile class. That is, the class containing decile. 

N  =  Total frequency

Nl  =  Less than cumulative frequency corresponding to l1. (Pre decile class)

Nu  =  Less than cumulative frequency corresponding to l2. (Post decile class)

l2 being the upper class boundary of the decile class.

C  =  l2 - l1  =  length of the decile class. 

Example 1 : 

Following are the wages of the laborers : 

$82, $56, $90, $50, $120, $75, $75, $80, $130, $65

Find D6.

Solution :

Number of values given (n)  =  10

Arrange the wages in ascending order : 

$50, $56, $65, $75, $75, $80, $82, $90, $120, $130

Formula to find decile is   

(n + 1)dth value

To find D6, substitute 10 for n and 6/10 for p in the above formula.

(n + 1)dth value  =  (10 + 1) ⋅ (6/10)th value

Simplify. 

(n + 1)dth value  =  (11) ⋅ (6/10)th value

(n + 1)dth value  =  (66/10)th value

(n + 1)dth value  =  6.6th value

Find 6.6th value in the ascending order of wages :

6.6th value  =  6th value + 0.6(7th value - 6th value)

6.6th value  =  80 + 0.6(82 - 80)

6.6th value  =  80 + 0.6(2)

9.02th value  =  80 + 1.2

9.02th value  =  81.2

So, D6.6 is $81.20.

Example 1 : 

Following distribution relates to the distribution of monthly wages of 100 workers. 

Wages (in $)

Less than 500

500 - 699

700 - 899

900 - 1099

1100 - 1499

More than 1500

Number of workers

5

23

29

27

10

6

Compute D7.

Solution :

Computation of D7

Wages (in $)

Number of workers (less than cumulative frequency)

L

499.50

699.50

899.50

1099.50

1499.50

U

0

5

28

57

84

94

100

The formula to find decile for grouped frequency distribution is 

Number of values given (N)  =  100

For D7, we have

d  =  7/10

Then, we have

Nd  =  100⋅ (7/10)  =  70

In the cumulative frequency table above, 70 comes between 57 and 84.

Then, we have 

Nl  =  57

Nu  =  84

l1  =  899.50

C  =  1099.50 - 899.50  =  200

To find D7, substitute the above values in the formula.

D7  =  899.50 + [(70 - 57)/(84 - 57)] ⋅ 200

D7  =  899.50 + (13/27) ⋅ 200

D7  =  899.50 + 2600/27

D7  =  899.50 + 96.30

D7  =  995.80

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 21, 24 06:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 74)

    Nov 20, 24 08:12 AM

    digitalsatmath60.png
    Digital SAT Math Problems and Solutions (Part - 74)

    Read More