Formula to find derivative of a function f(x) by first principle :
This is also called as limit definition of the derivative.
Derivative of cotx using first principle :
Let
f(x) = cotx
From one of the Trigonometric Identities,
sinAcosB - cosAsinB = sin(A - B)
From standard results of limits,
Find the derivative of each of the following.
Problem 1 :
cot(3x)
Solution :
We already know the derivative of cotx, which is -csc2x. We can find the derivative of cotx(3x) using chain rule.
= [cot(3x)]'
= [-csc2(3x)](3x)'
= [-csc2(3x)](3)
= -3csc2(3x)
Problem 2 :
cot(2x - 1)
Solution :
= [cot(2x - 1)]'
= [-csc2(2x - 1)](2x - 1)'
= [-csc2(2x - 1)](2 - 0)
= [-csc2(2x - 1)](2)
= -2csc2(2x - 1)
Problem 3 :
cot(2x2 - 5x + 6)
Solution :
= [cot(2x2 - 5x + 6)]'
= [-csc2(2x2 - 5x + 6)](2x2 - 5x + 6)'
= [-csc2(2x2 - 5x + 6)](4x - 5 + 0)
= [-csc2(2x2 - 5x + 6)](4x - 5)
= -(4x - 5)csc2(2x2 - 5x + 6)
Problem 4 :
cot2x
Solution :
= (cot2x)'
= (2cot2-1x)(ccotx)'
= (2cotx)(-csc2x)
= -2cotxcsc2x
Problem 5 :
Solution :
Problem 6 :
cot√x
Solution :
Problem 7 :
ecotx
Solution :
= (ecotx)'
= ecotx(cotx)'
= ecotx(-csc2x)
= (-csc2x)ecotx
Problem 8 :
ln(cotx)
Solution :
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Feb 01, 25 10:12 AM
Feb 01, 25 06:26 AM
Feb 01, 25 06:23 AM