DERIVATIVES OF RADICAL FUNCTIONS WORKSHEET

Find the derivative of the following radical functions with respect to x :

1. y = √(x + 2)

2. y = √(2x - 1)

3. y = √(3x2 + 5)

4. y = √(2x4 + 2x - 1)

5. y = (x+ 2x)√x

y = (√x + 2x)/x2 - 1

1. Answer :

y = √(x + 2)

y' = {1/[2√(x + 2)]}(x + 2)'

y' = {1/[2√(x + 2)]}(1)

y' = 1/[2√(x + 2)]

2. Answer :

y = √(2x - 2)

y' = {1/[2√(2x - 1)]}(2x - 1)'

y' = {1/[2√(2x - 1)]}(2)

y' = 1/√(2x - 1)

3. Answer :

y = √(3x2 + 5)

y' = {1/[2√(3x2 + 5)]}(3x2 + 5)'

y' = {1/[2√(3x2 + 5)]}(6x)

= 3x/√(3x2 + 5)

4. Answer :

y = √(2x4 + 2x - 1)

y' = {1/[2√(2x4 + 2x - 1)]}(2x4 + 2x - 1)'

y' = {1/[2√(2x4 + 2x - 1)]}(8x3 + 2)

= (4x3 + 1)/(2x4 + 2x - 1)

5. Answer :

y = (x+ 2x)√x

Since two x terms are multiplied, we have to use the product rule to find the derivative.

Let u = x+ 2x.

u' = 3x2 + 2(1)

  = 3x2 + 2

Let v = √x.

v' = 1/2√x

Product rule :

(uv)' = uv' + u'v

y' = (x+ 2x)(1/2√x) + (3x2 + 2)√x

= (x3/2√x + 2x/2√x) + 3x2√x + 2√x

= (1/2)x(3-1/2) + x(1 - 1/2) + 3x(2 + 1/2) + 2√x

= (1/2)x5/2 + x1/2 + 3x5/2 + 2√x

= [(1/2) + 3]x5/2 + √x + 2√x

  = (7/2)x5/2 + 3√x

6. Answer :

y = (√x + 2x)/x2 - 1

In the above function, we have variable x in both numerator and denominator.

So, we have to use the quotient rule to find the derivative 

Quotient rule :

(u/v)' = (vu' - uv')/v2

Let u = √x + 2x.

u' = 1/2√x + 2(1)

= 1/2√x + 2

Let v = x2 - 1.

v' = 2x - 0

= 2x 

= [(x2 - 1)(1/2√x + 2) - (√x + 2x) (2x)]/(x2 - 1)2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 114)

    Feb 21, 25 08:51 AM

    digitalsatmath119.png
    Digital SAT Math Problems and Solutions (Part - 114)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Feb 21, 25 08:50 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 115)

    Feb 21, 25 08:48 AM

    Digital SAT Math Problems and Solutions (Part - 115)

    Read More