Differentiation formulas :
Here we are going to see list of formulas used in differentiation.
d (xn) d (log x) d (Constant) d (√x) d (ex) d (eax) d (sin x) d (sin ax) d (cos x) d (cos ax) d (tan x) d (tan ax) d (sec x) d (sec ax) d (cot x) d (cot ax) d (cosec x) d (cosec ax) d (sin-1 x) d (cos-1 x) d (tan-1 x) d (cosec-1 x) d (sec-1 x) d (cot-1 x) d (ax) Product rule : d (uv) Quotient rule : d (u/v) |
n x (n - 1) 1/x 0 1/2√x ex aeax cos x a cos ax -sin x -a sin ax sec2x a sec2ax sec x tan x a sec ax tan ax -cosec2x -cosec2ax -cosec x cot x -a cosec ax cot ax 1/√(1-x2) -1/√(1-x2) 1/(1+x2) -1/(x√(x2 - 1)) 1/(x√(x2 - 1)) -1/(1+x2) ax log a u v' + v u' (vu' - uv')/v2 |
Differentiation using first principles :
Formulas in limits :
Example 1 :
Differentiate x⁵ tan x
Solution:
Let y = x⁵ tan x
u = x⁵ v = tan x
u' = 5x⁴ v' = sec² x
(UV)' = UV' + VU'
= (x⁵)sec² x + (tan x)(5x⁴)
= x⁵sec² x + 5x⁴tan x
= x⁴[xsec² x + tan x]
Example 2 :
Differentiate (x² - 1)/ (x² + 1) with respect to x
Solution :
let y = (x² - 1)/ (x² + 1)
u = x² - 1 v = x² + 1
u' = 2x - 0 v' = 2x + 0
u' = 2x v' = 2x
So y' = [(x² + 1) (2x) - (x² - 1)(2x)] /(x² + 1)²
= [(2x)(x² + 1) - (2x)(x² - 1)] /(x² + 1)²
= [(2x³ + 2x) - (2x³ - 2x)] /(x² + 1)²
= [2x³ + 2x - 2x³ + 2x] /(x² + 1)²
= 4x /(x² + 1)²
Example 3 :
Differentiate log (sin x) with respect to x
Solution :
let y = log (sin x) and we are going to take u = sin X
Now the function becomes y = log u
dy/dx = (dy/du) x (du/dx)
dy/du = 1/u
du/dx = cos X
dy/dx = (1/u) x cos X
= cos X/u
= cos X/sin X
= cot X
Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Feb 21, 25 08:51 AM
Feb 21, 25 08:50 AM
Feb 21, 25 08:48 AM