DIFFERENTIATION USING SUBSITUTION

Example 1 :

Differentiate sin-1 (3x - 4x3) with respect to x

Solution :

Let y  =  sin-1 (3x - 4x3

First let us consider (3x - 4x3).

If we plug sin θ instead of x in the given function we will get

3 sin θ - 4 sin³ θ

This the formula for sin 3θ.

So, put x  =  sin θ and θ  =  sin-1 x

y = sin-1 [3(sin θ) - 4(sin θ)³]

y = sin-1 [3 sin θ - 4 sin³ θ]

y = sin-1 [sin 3θ]

y = 3 θ

y = 3 sin-1x

differentiating with respect to x on both sides

dy/dx  =  3(1/√(1 - x2))

dy/dx  =  3/√(1 -  x2)

Example 2 :

Differentiate tan-1 [(1+x2)/(1-x2)] with respect to x

Solution : 

Take y = tan-1[(1+x2)/(1-x2)]

tan 2θ = (1 - tan2θ) / (1 + tan2θ)

then x = tan θ

y = tan-1[(1 - tan2θ) / (1 + tan2θ)]

y = tan-1[tan 2θ]

y = 2θ

Here θ = tan-1 x

y = 2tan-1 x

dy/dx = 2 (1/1+x2)

= 2/(1+x2)

Example 3 :

Differentiate the following

sin-1[2x/(1+x2)]

Solution :

Let y  =  sin-1[2x/(1+x2)]

Let x  =  tan a

a = tan-1x

y = sin-1[2tan a/(1+tan2 a)]

y = sin-1[sin 2a]

y = 2a

y = tan-1x

Differentiate with respect to x, we get

dy/dx = 2(1/(1+x2))

dy/dx = 2/(1+x2)

Example 4 :

Differentiate the following

tan-1[√(1 - cos x)/(1+cosx)]

Solution :

Let y  =  tan-1[√(1 - cos x)/(1+cosx)]

Trigonometric formula for (1-cos x)/(1+cosx)  =  tan2(x/2)

By applying trigonometric formula, we may find derivatives easily. 

 y  =  tan-1[√tan2(x/2)]

y = x/2

Differentiating with respect to "x"

dy/dx  =  1/2

Example 5 :

Differentiate the following

tan-1[6x/1-9x2]

Solution :

Let y  =  tan-1[6x/1-9x2]

y  =  tan-1[2(3x) /1-(3x)2]

Let 3x = tan θ

y  =  tan-1[2 tan θ /1-tan2θ]

2 tan θ /1-tan2θ  = tan 2θ

y  =  tan-1[tan 2θ]

y = 2θ

From 3x = tan θ, θ = tan-1(3x)

Applying the value of θ, we get

y = 2tan-1(3x)

Differentiating with respect to x, we get

dy/dx = 2(1/1 + (3x)2) (3)

= 6/(1 + 9x2)

Example 6 :

Differentiate the following

cos (2tan-1[√(1-x)/(1+x)])

Solution :

Let y  =  cos (2tan-1[√(1-x)/(1+x)])

let x = cos θ

Differentiating with respect to x, we get

dx/dθ  =  -sin θ

 y  =  cos (2tan-1[√(1-cosθ)/(1+cosθ)])

 y  =  cos (2tan-1[√tan2(θ/2])

 y  =  cos (2tan-1[tan(θ/2])

 y  =  cos θ

From x = cos θ, θ = cos-1(x)

y = cos (cos-1(x))

y = x

Differentiating with respect to x, we get

dy/dx = 1

Example 7 :

If y = tan-1(1 + x)/(1 - x), then find y'

Solution :

Let

tan π/4 = 1

tan θ = x

(1 + x)/(1 - x) = (tan π/4 + tan θ) / (1 - tan π/4 tan θ)

tan (A + B) = (tan A + tan B) / (1 - tan A tan B)

= tan (π/4 + θ)

y = tan-1[tan (π/4 + θ)]

y = π/4 + θ

Applying the value of θ as tan-1(x)

y = π/4 + tan-1(x)

Differentiate with respect to x, we get

dy/dx = 0 + 1/(1 + x2)

dy/dx = 1/(1 + x2)

Example 8 :

Find f'(x) if f(x) = cos-1(4x3 - 3x)

Solution :

f(x) = cos-1(4x3 - 3x)

Let x = cos θ

= cos-1(4(cos θ)3 - 3 cos θ)

= cos-1(4cos3 θ - 3 cos θ)

= cos-1(cos 3θ)

f(x) = 3θ

Applying the value of θ from x = cos θ

θ = cos -1(x)

f(x) = 3 cos -1(x)

f'(x) = 3 (-1/√1-x2)

f'(x) = (-3/√1-x2)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 29, 25 06:00 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 105)

    Jan 29, 25 05:52 AM

    digitalsatmath106.png
    Digital SAT Math Problems and Solutions (Part - 105)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 104)

    Jan 27, 25 11:29 AM

    digitalsatmath104.png
    Digital SAT Math Problems and Solutions (Part - 104)

    Read More