What is complex number ?
A complex number is the sum of a real number and an imaginary number. A complex number is of the form
a + ib
and its represented by ‘z’.
Write the complex number in standard form :
Example 1 :
2/(3 – i)
Solution :
Given, 2/(3 – i)
Multiply the numerator and denominator by the conjugate of the denominator 3 – i. That is 3 + i
= [2/(3 – i)] · (3 + i)/(3 + i)
= 2(3 + i) / (3 – i) (3 + i)
= 2(3 + i) / (32 - i2)
= 2(3 + i) / (9 + 1)
= 2(3 + i) / 10
= (3 + i) / 5
= (3/5) + (1/5)i
So, the standard form is 3/5 + 1/5i
Example 2 :
(5 + i)/(2 – 3i)
Solution :
Given, (5 + i)/(2 – 3i)
Multiply the numerator and denominator by the conjugate of the
Conjugate = 2 + 3i
[(5 + i)/(2 – 3i)] · [(2 + 3i)/(2 + 3i)]
= (5 + i) (2 + 3i) / (2 – 3i) (2 + 3i)
= (10 + 15i + 2i + 3i2) / (22 - (3i)2)
= (10 + 17i - 3) / (4 + 9)
= (7 + 17i) / 13
= (7/13) + (17/13)i
So, the standard form is 7/13 + 17/13i
Example 3 :
1/(2 + i)
Solution :
Given, 1/(2 + i)
Multiply the numerator and denominator by the conjugate of the denominator 2 + i. That is 2 – i
= [1/(2 + i)] [(2 - i) / (2 - i)]
= (2 - i) / (2 + i)(2 - i)
= (2 - i) / (22 - i2)
= (2 - i) / (4 + 1)
= (2 - i) / 5
= (2/5) - (1/5)i
So, the standard form is 2/5 - 1/5i
Example 4 :
i/(2 - i)
Solution :
Given, i/(2 - i)
Multiply the numerator and denominator by the conjugate of the denominator 2 - i. That is 2 + i
= [i/(2 - i)] [(2 + i) / (2 + i)]
= i (2 + i) / (2 - i)(2 + i)
= i (2 + i) / (22 - i2)
= (2i + i2) / (4 + 1)
= (2i - 1) / 5
= (-1 + 2i)/5
= (-1/5) + (2/5)i
So, the standard form is (-1/5) + (2/5)i.
Example 5 :
(2 + i)/(2 – i)
Solution :
Given, (2 + i)/(2 – i)
Multiply the numerator and denominator by the conjugate of the denominator 2 - i. That is 2 + i
= [(2 + i)/(2 – i)] [(2 + i) / (2 + i)]
= (2 + i)(2 + i) / (2 – i)(2 + i)
= (2 + i)2 / (22 - i2)
= [4 + i2 + 2(2)i] / (4 + 1)
= [4 - 1 + 4i] / 5
= (3 + 4i)/5
= (3/5) + (4/5)i
So, the standard form is 3/5 + 4/5i
Example 6 :
(2 + i)/3i
Solution :
Given, (2 + i)/3i
Multiply the numerator and denominator by the conjugate of the denominator 3i. That is -3i
= [(2 + i)/3i] [-3i/-3i]
= -3i(2 + i) / (-9i2)
= (-6i - 3i2) / 9
= (-6i - 3(-1)) / 9
= (-6i + 3) / 9
= (3/9) - (6i/9)
= (1/3) - (2i/3)
So, the standard form is 1/3 - 2/3i
Example 7 :
(2 + i)2(-i)/(1 + i)
Solution :
Given, (2 + i)2(-i)/(1 + i)
Multiply the numerator and denominator by the conjugate of the denominator 1 + i. That is 1 – i
(2 + i)2(-i) = (4 + i2 +4i)(-i)
= (4 - 1 + 4i)(-i)
= (3 + 4i)(-i)
= 3i - 4i2
= 3i + 4
(3i + 4)/(1 + i) = [(3i + 4)/(1 + i)] [(1 - i)/(1 - i)]
= (-3+7i+4)/(1+1)
= (1+7i)/2
= 1/2 + (7/2)i
So, the standard form is 1/2 + (7/2)i.
Example 8 :
(2 - i)(1 + 2i)/(5 + 2i)
Solution :
Given, (2 - i)(1 + 2i)/(5 + 2i)
= (2 - i)(1 + 2i)/(5 + 2i)
= (2 + 4i - i - 2i2)/(5 + 2i)
= (2 + 3i + 2)/(5 + 2i)
= (4 + 3i) / (5 + 2i)
Multiply the numerator and denominator by the conjugate of the denominator 5 + 2i. That is 5 - 2i
= [(4 + 3i) / (5 + 2i)] [(5 - 2i)/(5 - 2i)]
= (4 + 3i) (5 + 2i) / (5 - 2i)(5 - 2i)
= (4 + 3i) (5 + 2i) / (5 + 2i)(5 - 2i)
= (20 + 8i + 15i + 6i2) / (52 - (2i)2)
= (20 + 23i - 6) / (25 + 4)
= (14 + 23i) / 29
= (14/29) + (23/29)i
So, the standard form is (14/29) + (23/29)i.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 25, 25 01:00 AM
Jan 25, 25 12:52 AM
Jan 24, 25 12:30 PM