How to divide the two complex numbers in polar form ?
Let z1 = r1(cos θ1 + i sin θ1 ) and z2 = r2(cos θ2 + i sin θ2 ) be two complex numbers in the polar form.
We can use the formula given below to find the division of two complex numbers in the polar form.
z1/z2 = r1/r2[cos (θ1 - θ2) + i sin (θ1 - θ2)]
Find the trigonometric form of the quotient.
Example 1 :
z1 = 2(cos 30˚ + i sin 30˚)
z2 = 3(cos 60˚ + i sin 60˚)
Solution :
By using the z1/z2 formula, we get
z1/z2 = (2/3)[cos (30˚ - 60˚) + i sin (30˚ - 60˚)]
z1/z2 = (2/3)[cos (-30˚) + i sin (-30˚)]
Example 2 :
z1 = 5(cos 220˚ + i sin 220˚)
z2 = 2(cos 115˚ + i sin 115˚)]
Solution :
By using the z1/z2 formula, we get
z1/z2 = 5/2[cos (220˚ - 115˚) + i sin (220˚ - 115˚)]
z1/z2 = 5/2(cos 105˚ + i sin 105˚)
Example 3 :
z1 = 6(cos 5π + i sin 5π)
z2 = 3(cos 2π + i sin 2π)
Solution :
z1/z2 = 6/3[cos (5π - 2π) + i sin (5π - 2π)]
z1/z2 = 2(cos 3π + i sin 3π)
Example 4 :
z1 = cos (π/2) + i sin (π/2)
z2 = cos (π/4 + i sin (π/4)
Solution :
z1/z2 = cos (π/2 - π/4) + i sin (π/2 - π/4)
Taking the least common multiple, we get
z1/z2 = cos ((2π - π)/4) + i sin ((2π - π)/4)
z1/z2 = cos (π/4) + i sin (π/4)
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 02, 25 08:27 AM
Jan 02, 25 08:23 AM
Jan 01, 25 10:53 PM