DOMAIN AND RANGE OF QUADRATIC FUNCTION WORKSHEET

Problem 1 : 

Find the domain and range of the quadratic function given below. 

y  =  x2 + 5x + 6

Problem 2 : 

Find the domain and range of the quadratic function given below. 

y  =  -2x2 + 5x - 7

Problem 1 : 

Find the domain and range of the quadratic function given below. 

y  =  x2 + 5x + 6

Solution : 

Domain :

In the quadratic function, y  =  x2 + 5x + 6, we can plug any real value for x. 

Because, y is defined for all real values of x.  

Therefore, the domain of the given quadratic function is all real values. 

That is, 

Domain  =  {x | x ∈ R}

Range : 

Comparing the given quadratic function y  =  x2 + 5x + 6 with  

y  =  ax2 + bx + c

we get 

a  =  1

b  =  5

c  =  6

Since the leading coefficient "a" is positive, the parabola is open upward.  

Find the x-coordinate at the vertecx. 

x  =  -b / 2a

Substitute 1 for a and 5 for b.  

x  =  -5/2(1)

x  =  -5/2

x  =  -2.5

Substitute -2.5 for x in the given quadratic function to find y-coordinate at the vertex. 

y  =  (-2.5)2 + 5(-2.5) + 6

y  =  6.25 - 12.5 + 6

y  =  - 0.25

So, y-coordinate of the vertex is -0.25

Because the parabola is open upward, range is all the real values greater than or equal to -0.25

Range  =  {y | y ≥ -0.25}

To have better understanding on domain and range of a quadratic function, let us look at the graph of the quadratic function y  =  x2 + 5x + 6.

When we look at the graph, it is clear that x (Domain) can take any real value and y (Range) can take all real values greater than or equal to -0.25  

Problem 2 : 

Find the domain and range of the quadratic function given below. 

y  =  -2x2 + 5x - 7

Solution : 

Domain :

In the quadratic function, y  =  -2x2 + 5x - 7, we can plug any real value for x. 

Because, y is defined for all real values of x  

Therefore, the domain of the given quadratic function is all real values. 

That is, 

Domain  =  {x | x ∈ R}

Range : 

Comparing the given quadratic function y  =  -2x2 + 5x - 7 with 

y  =  ax2 + bx + c

we get 

a  =  -2

b  =  5

c  =  -7

Since the leading coefficient "a" is negative, the parabola is open downward.  

x  =  -b / 2a

Substitute -2 for a and 5 for b.  

x  =  -5/2(-2)

x  =  -5/(-4)

x  =  5/4

x  =  1.25

Substitute 1.25 for x in the given quadratic function to find y-coordinate at the vertex. 

y  =  -2(1.25)2 + 5(1.25) - 7

y  =  -3.125 + 6.25 - 7

y  =  -3.875

So, y-coordinate of the vertex is -3.875.

Because the parabola is open downward, range is all the real values greater than or equal to -3.875.

Range  =  {y | y  -3.875}

To have better understanding on domain and range of a quadratic function, let us look at the graph of the quadratic function y  =  -2x2 + 5x - 7.

When we look at the graph, it is clear that x (Domain) can take any real value and y (Range) can take all real values less than or equal to -3.875  

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Word Problems on Division

    Nov 17, 24 01:42 PM

    Word Problems on Division

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 16, 24 08:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 71)

    Nov 16, 24 08:03 AM

    digitalsatmath56.png
    Digital SAT Math Problems and Solutions (Part - 71)

    Read More