EVALUATE THE FOLLOWING LIMIT USING L'HOPITAL'S RULE

Evaluate the following limits, if necessary use l'hopital rule :

Problem 1 :

Solution :

Problem 2 :

Solution :

Factoring x2, we get

=  lim x-> ∞ x2(2 - 3/x2) / x2(1 - 5/x + 3/x2)

=  lim x-> ∞ (2 - 3/x2) / (1 - 5/x + 3/x2)

By applying the limit, we get

=  2/1

=  2

So, the answer is 2.

Problem 3 :

Solution :

By applying the limit, we get

=  ∞/log ∞

=  ∞/0

=  ∞

So, the answer is ∞.

Problem 4 :

Solution :

Using L'Hopital's rule, we get

So, the answer is 1.

Problem 5 :

Solution :

So, the answer is 0.

Problem 6 :

Solution :

By applying the limit, we get

=  0/2(1)

=  0

So, the answer is 0.

Problem 7 :

Solution :

So, the answer is -1.

Problem 8 :

Solution :

Let f(x)  =  xx

y  =  xx

log y  =  log xx

log y  =  x log x

log y  =  log x / (1/x)

lim x->0+ log y  =  lim x->0+ log x / (1/x)

lim x->0+ log y  =   ∞/(Indeterminant form)

Using L'Hopital's rule :

lim x->0+ log y  =  lim x->0+ (1/x) / (-1/x2)

lim x->0+ log y  =  lim x->0+ -x

By applying limit, we get

lim x->0+ log y  =  0

log (lim x->0+y)  =  0

(lim x->0+y)  =  e0

lim x->0+ y  =  1

So, the answer is 1.

Problem 9 :

Solution :

Let f(x)  =  (1 + (1/x))x

y  =  (1 + (1/x))x

log y  =  log (1 + (1/x))x

log y  =  x log (1 + (1/x))

log y  =  log (1 + (1/x)) / (1/x)

lim x -> log y  =  lim x ->∞ log (1 + (1/x)) / (1/x) 

By applying the limit, we get

lim x -> log y  =  lim x ->∞ log (1 + (1/)) / (1/)

lim x -> log y  =  lim x ->∞ log (1)/0

lim x -> log y  =  0/0 (Indeterminant form) 

By applying the limit, we get

lim x -> log y  =  1

log (lim x ->y)  =  1

lim x ->∞ y  =  e

Problem 10 :

Solution :

lim x->π/2  log y  =  lim x->π/2 (- sinx cosx)

By applying the limit, we get

lim x->π/2  log y  =  -sin(π/2) cos(π/2)

lim x->π/2  log y  =  1(0)

lim x->π/2  log y  =  0

log y (lim x->π/2  y)  =  0

(lim x->π/2  y)  =  1

So, the answer is 1.

Problem 11 :

Solution :

By applying the limit, we get

lim x->0+ log y  =  -1/2

log(lim x->0y)  =  -1/2

lim x->0y  =  e-1/2

lim x->0y  =  1/e

So, the answer is 1/e.

Problem 12 :

If an initial amount A0 of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is

If the interest is compounded continuously, (that is as n->), show that the amount after t years is A = A0 ert

Solution :

A  =  A0 (1+ r/n)nt

By applying the limit, we get

log (lim n-> y)  =  rt

lim n-> y  =  ert

A = A0 ert

Apart from the stuff given above if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More