Question 1 :
If cos A = 3/5, then find the value of
(sin A - cos A)/2 tan A
Solution :
cos A = 3/5 = Adjacent side / Hypotenuse side
(Opposite side)2 = (Hypotenuse side)2 - (Adjacent side)2
= 52 - 32
(Opposite side)2 = 25 - 9 = 16
Opposite side = √16 = 4
sin A = opposite side/ hypotenuse side = 4/5
tan A = opposite side / Adjacent side
tan A = 4/3
(sin A - cos A)/2 tan A = (4/5) - (3/5) / 2(4/3)
= (1/5) / (8/3)
= 3/40
Question 2 :
If cos A = 2x/(1 + x2), then find the values of sin A and tan A in terms of x.
Solution :
cos A = 2x/(1 + x2) = Adjacent side / Hypotenuse side
Opposite side2 = (1 + x2)2 - (2x)2
= 1 + x4 + 2x2 - 4x2
= 1 + x4 - 2x2
= (1 - x2)2
Opposite side = 1 - x2
sin A = Opposite side / Hypotenuse side
sin A = (1 - x2)/ (1 + x2)
tan A = Opposite side / Adjacent side
tan A = (1 - x2)/2x
Question 3 :
If sin θ = a/√a2 + b2, then show that
b sin θ = a cos θ
Solution :
Given that, sin θ = a/√a2 + b2
sin θ = Opposite side / Hypotenuse side
(Adjacent side)2 = (Hypotenuse)2 - (Opposite side)2
(Adjacent side)2 = (√a2 + b2 )2 - (a)2
Adjacent side = b
b sin θ = ab/√a2 + b2 ----(1)
cos θ = b/√a2 + b2
a cos θ = ab/√a2 + b2 ----(2)
(1) = (2)
Hence proved.
Question 4 :
If 3cot A = 2 , then find the value of
(4sin A - 3cos A)/(2sin A + 3cos A)
Solution :
cot A = 2/3 = Adjacent side / Opposite side
(Hypotenuse side)2 = (Opposite side)2 + (Adjacent side)2
(Hypotenuse side)2 = 32 + 22
Hypotenuse side = √13
sin A = Opposite side / Hypotenuse side
sin A = 3/√13
cos A = Adjacent side / Hypotenuse side
cos A = 2/√13
(4 sin A - 3 cos A)/(2 sin A + 3 cos A) :
= [4(3/√13) - 3(2/√13)]/[2(3/√13) + 3(2/√13)]
= [(12-6)/√13]/[(6+6)/√13]
= 6/12
= 1/2
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 26, 24 07:41 AM
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM