Evaluate the indicated expression assuming that f(x) = √x, g(x) = (x + 1)/(x + 2) , h(x) = |x - 1|.
(i) (f o g) (4)
(ii) (f o g) (5)
(iii) (g o f) (4)
(iv) (g o f) (5)
(v) (f o g o h) (0)
(vi) (h o g o f) (0)
Answer :
(i) (f o g) (4) :
(f o g) (4) = f[g(4)] ----(1)
g(x) = (x + 1)/(x + 2)
g(4) = (4 + 1)/(4 + 2) = 5/6
Substitute g(4) = 5/6 in (1).
(f o g) (4) = f(5/6)
= √(5/6)
(ii) (f o g) (5) :
(f o g) (5) = f[g(5)] ----(2)
g(x) = (x + 1)/(x + 2)
g(5) = (5 + 1)/(5 + 2) = 6/7
Substitute g(5) = 6/7 in (2).
(f o g) (5) = f(6/7)
= √x
= √(6/7)
(iii) (g o f)(4) :
(g o f) (4) = g[f(4)] ----(3)
f(x) = √x
f(4) = √4 = 2
Substitute f(4) = 2 in (3).
(g o f) (4) = g(2)
= (2 + 1)/(2 + 2)
= 3/4
(iv) (g o f) (5) :
(g o f) (5) = g[f(5)] ----(4)
f(x) = √x
f(5) = √5
Substitute f(5) = √5 in (4)
(g o f) (5) = g[√5]
= (√5 + 1)/(√5 + 2)
(v) (f o g o h) (0) :
(f o g o h) (0) = (f o g) [h(0)] ----(5)
h(x) = |x - 1|
h(0) = |0 - 1| = 1
Substitute h(0) = 1 in (5).
(f o g o h) (0) = (f o g) (1)
= f[g(1)] ----(6)
g(x) = (x + 1)/(x + 2)
g(1) = (1 + 1)/(1 + 2) = 2/3
Substitute g(1) = 2/3 in (6).
= f[2/3]
= √(2/3)
(vi) (h o g o f) (0) :
(h o g o f) (0) = (h o g) [f(0)] ----(7)
f(x) = √x
f(0) = √0 = 0
Substitute f(0) = 0 in (7).
= (h o g) (0)
= h[g(0)] ----(8)
g(x) = (x + 1)/(x + 2)
g(0) = (0 + 1)/(0 + 2) = 1/2
Substitute g(0) = 1/2 in (8).
= h[1/2]
= |1/2 − 1|
= |(1 - 2)/2|
= |-1/2|
= 1/2
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 12, 24 10:36 AM
Nov 12, 24 10:06 AM
Nov 10, 24 05:05 AM