Problem 1 :
Evaluate the indicated expression assuming that f(x) = √x, g(x) = (x + 1)/(x + 2) , h(x) = |x - 1|.
(i) (f o g) (4)
(ii) (f o g) (5)
(iii) (g o f) (4)
(iv) (g o f) (5)
(v) (f o g o h) (0)
(vi) (h o g o f) (0)
Solution :
(i) (f o g) (4) :
(f o g) (4) = f[g(4)] ----(1)
g(x) = (x + 1)/(x + 2)
g(4) = (4 + 1)/(4 + 2) = 5/6
Substitute g(4) = 5/6 in (1).
(f o g) (4) = f(5/6)
= √(5/6)
(ii) (f o g) (5) :
(f o g) (5) = f[g(5)] ----(2)
g(x) = (x + 1)/(x + 2)
g(5) = (5 + 1)/(5 + 2) = 6/7
Substitute g(5) = 6/7 in (2).
(f o g) (5) = f(6/7)
= √x
= √(6/7)
(iii) (g o f)(4) :
(g o f) (4) = g[f(4)] ----(3)
f(x) = √x
f(4) = √4 = 2
Substitute f(4) = 2 in (3).
(g o f) (4) = g(2)
= (2 + 1)/(2 + 2)
= 3/4
(iv) (g o f) (5) :
(g o f) (5) = g[f(5)] ----(4)
f(x) = √x
f(5) = √5
Substitute f(5) = √5 in (4)
(g o f) (5) = g[√5]
= (√5 + 1)/(√5 + 2)
(v) (f o g o h) (0) :
(f o g o h) (0) = (f o g) [h(0)] ----(5)
h(x) = |x - 1|
h(0) = |0 - 1| = 1
Substitute h(0) = 1 in (5).
(f o g o h) (0) = (f o g) (1)
= f[g(1)] ----(6)
g(x) = (x + 1)/(x + 2)
g(1) = (1 + 1)/(1 + 2) = 2/3
Substitute g(1) = 2/3 in (6).
= f[2/3]
= √(2/3)
(vi) (h o g o f) (0) :
(h o g o f) (0) = (h o g) [f(0)] ----(7)
f(x) = √x
f(0) = √0 = 0
Substitute f(0) = 0 in (7).
= (h o g) (0)
= h[g(0)] ----(8)
g(x) = (x + 1)/(x + 2)
g(0) = (0 + 1)/(0 + 2) = 1/2
Substitute g(0) = 1/2 in (8).
= h[1/2]
= |1/2 − 1|
= |(1 - 2)/2|
= |-1/2|
= 1/2
Problem 2 :
let f (x) = 3x + 5, g(x) = x2, and h(x) = −2x − 1.
Perform the indicated composition.
a. f (g(h(x))) b. h(g(f (x)))
c. f (f (f (x))) d. g(h(g(x)))
Solution :
f (x) = 3x + 5, g(x) = x2, and h(x) = −2x − 1.
a. f (g(h(x))) :
g(h(x)) = g(-2x - 1)
= (-2x - 1)2
= 4x2 - 2(-2x)(1) + 12
= 4x2 + 4x + 1
f (g(h(x))) = 3(4x2 + 4x + 1) + 5
= 12x2 + 12x + 3 + 5
= 12x2 + 12x + 8
b. h(g(f (x)))
g(f(x)) = g(3x + 5)
= (3x + 5)2
= (3x)2 + 2(3x)(5) + 52
= 9 x2 + 30x + 25
h(g(f (x))) = -2(9 x2 + 30x + 25) - 1
= -18x2 - 60x - 50 - 1
= -18x2 - 60x - 51
c. f (f (f (x))) :
f(f(x)) = f(3x + 5)
= 3(3x + 5)
= 9x + 15
f(f(f(x))) = 3(9x + 15)
= 27x + 45
d. g(h(g(x))) :
h(g(x)) = h(x2)
h(g(x)) = −2x2 − 1.
g(h(g(x))) = g(−2x2 − 1)
= (−2x2 − 1)2
= (-2x2)2 - 2(−2x2)(1) + 12
= 4x4 + 4x2 + 1
Problem 3 :
The function p(d) = 0.03d + 1 approximates the pressure (in atmospheres) at a depth of d feet below sea level. The function d(t) = 60t represents the depth (in feet) of a diver t minutes after beginning a descent from sea level, where 0 ≤ t ≤ 2.
a. Find p(d(t)). Interpret the terms and coefficient.
b. Evaluate p(d(1.5)) and explain what it represent
Solution :
a)
p(d) = 0.03d + 1
d(t) = 60t