RATIONAL EXPONENTS 

We use radical symbol √ to indicate roots. The index is the small number to the left of the radical symbol that says which root has to be taken.

For example, 3√ represents a cube root. Because, 

23  =  2 ⋅ 2 ⋅ 2  =  8,  3√8  =  2

Another way to write nth roots is by using exponents that are fractions.  

For example, for a > 1, suppose √a  =  am, then

√a  =  am

Square both sides. 

(√a)2  =  (am)2

Power of a Power Property.

a1  =  a2m

If two terms are equal with the same base, then the exponents must be equal. 

1  =  2m

Divide each side by 2.

1/2  =  m

So, for all a > 1, √a  =  a1/2.

Definition of a1/n :

Words :

A number raised to the power of 1/n is equal to the nth root of that number. 

Numbers :

51/2  =  √5

31/4  =  4√3

41/7  =  7√4

Algebra :

If a > 1 and n is an integer, where n ≥ 2, then 

a1/n  =  n√a

And also, 

a1/2  =  √a

a1/3  =  3√a

a1/4  =  4√a

and so on. 

Example 1 : 

Simplify :

641/3

Solution : 

=  641/3

Use the definition of a1/n.

=  3√64

=  3√(43)

=  4

Example 2 : 

Simplify :

811/4

Solution : 

=  811/4

Use the definition of a1/n.

=  4√81

=  4√(34)

=  3

Example 3 : 

Simplify :

321/5 + 1001/2

Solution : 

=  321/5 + 1001/2

Use the definition of a1/n.

=  532 100

=  5√(25) √(102)

=  2 + 10

=  12

Example 4 : 

Simplify :

1211/2 + 2561/4

Solution : 

=  1211/2 + 2561/4

Use the definition of a1/n.

=  √121 + 4√256

=  √(112) 4√(44)

=  11 + 4

=  15

Numerator Other than 1 

A fractional exponent can have a numerator other than 1, as in the expression b2/3

You can write the exponent as a product in two different ways as shown below.  

b2/3  =  b(1/3) ⋅ 2

=  (b1/3)2

=  (3√b)2

b2/3  =  b⋅ 1/3

=  (b2)1/3

3√(b2)

Definition of am/n :

Words :

A number raised to the power of m/n is equal to the nth root of the number raised to mth power.

Numbers :

82/3  =  (3√8)2  =  22  =  4

or

82/3  =  3√(82)  =  3√64  =  4

Algebra :

If a > 1 and m and n are integers, where n ≥ 1 and n ≥ 2, then 

am/n  =  (n√a)m  =  n√(am)

Example 5 : 

Simplify :

2162/3

Solution : 

=  2162/3

Use the definition of am/n.

=  (3√216)2

=  (3√63)2

=  (6)2

=  36

Example 6 : 

Simplify :

324/5

Solution : 

=  324/5

Use the definition of am/n.

=  (5√32)4

=  (5√25)4

=  (2)4

=  16

Example 7 : 

Simplify :

274/3

Solution : 

274/3

Use the definition of am/n.

=  (3√27)4

=  (3√33)4

=  (3)4

=  81

Note :

Remember that √ always indicate a nonnegative square root. When you simplify variable expressions that contain √, such as √x2, the answer can not be negative. But x may be negative. Therefore you simplify √x2 as |x| to ensure the answer is nonnegative. 

When n is even, you must simplify n√xn, to |x|, because you do not know whether x is positive or negative. When n is odd, simplify n√xn, to x. 

n√xn  =  |x|, when n is even

n√xn  =  x, when n is odd

Example 8 : 

Simplify :

3√(x9y3)

Solution : 

=  3√(x9y3)

Use the definition of am/n.

=  (x9y3)1/3

Power of a Product Property.

 (x9)1/3 ⋅ (y3)1/3

Power of a Power Property.

=  (x⋅ 1/3⋅ (y⋅ 1/3)

Simplify exponents. 

=  (x3⋅ (y1)

=  x3y

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More