FACTOR OUT A MONOMIAL

The following steps will be useful to factor out a monomial from the given polynomial.  

Step 1 :

Find the greatest common factor of the terms in the polynomial given.  

Step 2 :

Divide each term by the greatest common factor and write the quotients inside the parentheses

Step 3 :

Write the greatest factor and parentheses together using multiplication. 

Example 1 :

Factor :

6x4 + 4x3y

Solution : 

Greatest common factor of 6x4 and 4x3y is 2x3

Divide 6x4 and 4x3y by 2x3.

6x4/2x3  =  3x

4x3y/2x3  =  2y

Write the quotients 3x and 2y inside the parenthesis and multiply by the greatest common factor 2x3.

2x3(3x + 2y)

So, 

6x4 + 4x3y  =  2x3(3x + 2y)

Example 2 :

Factor : 

12a- 21ab

Solution : 

Greatest common factor of 12aand -21ab is 3a. 

Divide 12aand -21ab by 3a. 

12a2/3a  =  4a

-21ab/3a  =  -7b

Write the quotients 4a and -7b inside the parenthesis and multiply by the greatest common factor 3a.

3a(4a - 7b)

So, 

12a- 21ab  =  3a(4a - 7b)

Example 3 :

Factor : 

6n- 3n5

Solution : 

Greatest common factor of 6n3 and -3n5 is 3n3

Divide 6n3 and -3n5 by 3n3

6n3/3n3  =  2n

-3n5/3n3  =  -n2

Write the quotients 2n and -n2 inside the parenthesis and multiply by the greatest common factor 3n3.

3n3(2n - n2)

So, 

6n- 3n5  =  3n3(2n - n2)

Example 4 :

Factor : 

10y- 9y2 + y

Solution : 

Greatest common factor of 10y3, -9y2 and y is y

Divide 10yand -9y2 and y by y

10y3/y  =  10y2

-9y2/y  =  -9y

y/y  =  1

Write the quotients 10y2, -9y and y inside the parenthesis and multiply by the greatest common factor y.

y(10y2 - 9y + 1)

So, 

10y- 9y2 + y  =  y(10y2 - 9y + 1)

Example 5 :

Factor :

15x3 + 10x2y - 25x2z

Solution : 

Greatest common factor of 15x3, 10x2y, -25x2z is 5x2.

Divide 15x3, 10x2y and -25x2z by 5x2.

15x3/5x2  =  3x

10x2y/5x2  =  2y

-25x2z/5x2  =  -5z

Write the quotients 3x, 2y and -5z inside the parenthesis and multiply by the greatest common factor 5x2.

5x2(3x + 2y - 5z)

So, 

15x3 + 10x2y - 25x2z  =  5x2(3x + 2y - 5z)

Example 6 :

Factor : 

-8m+ 24m6 + 12m5

Solution : 

Greatest common factor of -8m7, 24m6 and 12mis 4m5

Divide -8m7, 24m6 and 12mby 4m5

-8m7/4m5  =  -2m2

24m6/4m5  =  6m

12m5/4m5  =  3

Write the quotients -2m2, 6m and 3 inside the parenthesis and multiply by the greatest common factor 4m5.

4m5(-2m2 + 6m + 3)

So, 

-8m+ 24m6 + 12m5  =  4m5(-2m2 + 6m + 3)

Example 7 :

Factor :

-7u2 - 21u3

Solution : 

Greatest common factor of -7u2 and -21u3 is -7u2.

Divide -7uand -21u3 by -7u2.

-7u2/(-7u2)  =  1

-21u3/(-7u2)  =  3u

Write the quotients 1 and 3u inside the parenthesis and multiply by the greatest common factor -7u2.

-7u2(1 + 3u)

So, 

-7u2 - 21u3  =  -7u2(1 + 3u)

Example 8 :

Factor :

28m2n2 - 12m3n - 20m3n2

Solution : 

Greatest common factor of 28m2n2, -12m3n, -20m3nis 4m2n.

Divide 28m2n2, -12m3n, -20m3nby 4m2n.

28m2n2/4m2n  =  7n

-12m3n/4m2n  =  -3m

-20m3n2/4m2n  =  -5mn

Write the quotients 7n, -3m and -5mn inside the parenthesis and multiply by the greatest common factor 4m2n.

4m2n(7n - 3m - 5mn)

So, 

28m2n2 - 12m3n - 20m3n2  =  4m2n(7n - 3m - 5mn)

Example 9 :

Factor :

16a5b3 + 32a4b

Solution : 

= 16a5b3 + 32a4b

Writing 16 and 32 as product of prime factors.

= 24a5b3 + 25a4b

Factoring 24, we get

24a4b (a b2 + 1)

= 16a4b (a b2 + 1)

Example 10 :

Factor :

16x- 12x3- 18x4

Solution : 

= 16x- 12x3- 18x4

16 = 2(8)

12 = 2(6)

18 = 2(9)

Every coefficients can be written as a product of 2.

= 2x2 (8 - 6x- 9x2)

Example 11 :

Factor :

35a2- 5ab

Solution : 

= 35a2- 5ab

= 5ab(7a - 1)

Example 12 :

Factor :

4k2 - 56k

Solution : 

= 4k2 - 56k

Factoring 4k, we get

= 4k(k - 14)

Example 13 :

Factor :

6n2 - 114n

Solution : 

= 6n2 - 114n

Factoring 6n, we get

= 6n(n - 19)

Example 14 :

Factor :

9x2 - 36x

Solution : 

= 9x2 - 36x

Factoring 9x, we get

= 9x(x - 4)

Example 15 :

Factor :

8r5 - 20r4 - 12r3

Solution : 

= 8r5 - 20r4 - 12r3

Factoring 4, we get

= 4r3(2r2 - 5r - 3)

Example 16 :

Factor :

x3 - 5x2

Solution : 

= x3 - 5x2

Factoring x2, we get

= x2(x - 5)

Example 16 :

Factor :

6w4 - 10w3 + 2w

Solution : 

= 6w4 - 10w3 + 2w

Factoring 2w, we get

= 2w(3w3 - 5w2 + 1)

Example 17 :

Factor :

-3p4 + 15p+ 6p

Solution : 

= -3p4 + 15p+ 6p

Factoring 3p, we get

= 3p(-p3 + 5p + 1)

Example 18 :

Factor :

4x2 + 32xy

Solution : 

= 4x2 + 32xy

Factoring 4x, we get

= 4x(x + 8y)

Example 19 :

Factor :

9a2 - 153a

Solution : 

= 9a2 - 153a

Factoring 9a, we get

= 9a(a - 17)

Example 20 :

Factor :

11x2 - 165x

Solution : 

= 11x2 - 165x

Factoring 11x, we get

= 11x(x - 15)

Example 21 :

Factor :

3v2 - 60v

Solution : 

= 3v2 - 60v

Factoring 3v, we get

= 3v(v - 20)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 72)

    Nov 23, 24 09:36 PM

    digitalsatmath57.png
    Digital SAT Math Problems and Solutions (Part - 72)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More