Question 1 :
Factorise the following expressions:
(i) 2a2 + 4a2 b + 8a2 c
Solution :
= 2a2 + 4a2 b + 8a2 c
By factoring 2a from the three terms, we get
= 2a (a + 2ab + 4ac)
(ii) ab - ac - mb + mc
Solution :
= ab - ac - mb + mc
= a(b - c) - m(b - c)
= (a - m) (b - c)
Question 2 :
Factorise the following:
(i) x2 + 4x + 4
Solution :
= x2 + 4x + 4
= x2 + 2 ⋅ x ⋅ 2 + 22
= (x + 2)2
(ii) 3a2 - 24ab + 48b2
Solution :
= 3a2 - 24ab + 48b2
= 3 (a2 - 8ab + 16b2)
= 3 [a2 - 2a(4b) + (4b)2]
= 3 (a - 4b)2
(iii) x5 - 16x
Solution :
= x5 - 16x
= x(x4 - 16)
= x [(x2)2 - 42]
= x(x2 + 4)(x2 - 4)
= x(x2 + 4)(x + 2)(x - 2)
(iv) m2 + 1/m2 - 23
Solution :
m2 + 1/m2 - 23 = m2 + 1/m2 - 25 + 2
= (m2 + 1/m2 + 2) - 25
= (m + (1/m))2 - 52
= (m + (1/m) + 5) (m + (1/m) - 5)
(v) 6 - 216 x2
Solution :
= 6 - 216 x2
= 6(1 - 36x2)
= 6[1 - (6x)2]
= 6(1 + 6x)(1 - 6x)
(vi) a2 + 1/a2 - 18
Solution :
a2 + 1/a2 - 18 = a2 + 1/a2 - 16 - 2
= (a2 + 1/a2 - 2) - 16
= (a - (1/a))2 - 42
= (a + (1/a) + 4) (a + (1/a) - 4)
Question 3 :
Factorise the following:
(i) 4x2 + 9y2 + 25z2 + 12xy + 30yz + 20xz
Solution :
= 4x2 + 9y2 + 25z2 + 12xy + 30yz + 20xz
= (2x)2+(3y)2+(5z)2+2(2x)(3y)+2(3y) (5z)+2(5z)(2x)
= (2x + 3y + 5z)2
(ii) 25x2 + 4y2 + 9z2 - 20xy + 12yz - 30zx
Solution :
= 25x2 + 4y2 + 9z2 - 20xy + 12yz - 30zx
= (5x)2+(-2y)2+(-3z)2+2(5x)(-2y)+2(-2y)(3z)+2(-3z)(5x)
= (5x - 2y - 3z)2
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 02, 25 08:27 AM
Jan 02, 25 08:23 AM
Jan 01, 25 10:53 PM