Trinomials—Look for Perfect-Square Trinomials :
a2 + 2ab + b2 = (a + b)2
a2 - 2ab + b2 = (a - b)2
Examples :
x2 + 4x + 4 = x2 + 2(x)(2) + 22 = (x + 2)2
m2 - 6m + 9 = m2 - 2(m)(3) + 32 = (m - 3)2
Binomials—Look for a Difference of Two Squares :
a2 - b2 = (a + b)(a - b)
Example :
4x2 - 9y2 = 22x2 - 32y2
= (2x)2 - (3y)2
= (2x + 3y)(2x - 3y)
Problem 1 :
Factor :
x2 + 6xy + 9y2
Solution :
x2 + 6xy + 9y2 = x2 + 2(x)(3y) + (3y)2
= (x + 3y)2
= (x + 3y)(x + 3y)
Problem 2 :
Factor :
4a2 - 20ab + 25b2
Solution :
4a2 - 20ab + 25b2 = 22a2 - 20ab + 52b2
= (2a)2 - 20ab + (5b)2
= (2a)2 - 2(2a)(5b) + (5b)2
= (2a - 5b)2
= (2a - 5b)(2a - 5b)
Problem 3 :
Factor :
2x2 + 12xy + 18y2
Solution :
Factor out the GCF.
= 2(x2 + 6xy + 9y2)
= 2[x2 + 2(x)(3y) + (3y)2]
= 2(x + 3y)2
= 2(x + 3y)(x + 3y)
Problem 4 :
Factor :
2ab2 - 16ab + 32a
Solution :
Factor out the GCF.
= 2a(b2 - 8b + 16)
= 2a[b2 - 2(b)(4) + 42]
= 2a(b - 4)2
Problem 5 :
Factor :
x2 - 25y2
Solution :
x2 - 25y2 = x2 - 52y2
= x2 - (5y2)
= (x + 5y)(x - 5y)
Problem 6 :
Factor :
9m2 - 16n2
Solution :
9m2 - 16y2 = 32m2 - 42n2
= (3m)2 - (4n2)
= (3m + 4n)(3m - 4n)
Problem 7 :
Factor :
x4 - y4
Solution :
x4 - y4 = (x2)2 - (y2)2
= (x2 + y2)(x2 - y2)
= (x2 + y2)(x + y)(x - y)
Problem 8 :
Factor :
8p4 - 18q4
Solution :
Factor out the GCF.
32p4 - 162q4 = 2(16p4 - 81q4)
= 2[42(p2)2 - 92(q2)2]
= 2[(4p2)2 - (9q2)2]
= 2(4p2 + 9q2)(4p2 - 9q2)
= 2(4p2 + 9q2)[(2p)2 - (3q)2]
= 2(4p2 + 9q2)(2p + 3q)(2p - 3q)
Problem 9 :
If a and b are numbers such that (a−4)(b+6) = 0, then what is the smallest possible value of a2 + b2 ?
Solution :
Given that,
(a−4)(b+6) = 0
Equating each factor to 0, we get
a - 4 = 0 and b + 6 = 0
a = 4 and b = -6
Applying the values of a and b solved above in a2 + b2
a2 + b2 = 42 + (-6)2
= 16 + 36
= 52
So, the smallest possible value is 52.
Problem 10 :
Let m be an even integer. How many possible values of m satisfy √(m+7) ≤ 3?
(A) One (B) Two (C) Three (D) Four (E) Five
Solution :
√(m+7) ≤ 3
The value that we choose for m should be lesser than 7, then only we get positive values inside the square root.
When m = -6
√(-6 + 7) ≤ 3
√1 ≤ 3 (True)
When m = -4
√(-4 + 7) ≤ 3
√3 ≤ 3 (True)
When m = -2
√(-2 + 7) ≤ 3
√5 ≤ 3 (True)
When m = 0
√(0 + 7) ≤ 3
√7 ≤ 3 (True)
When m = 2
√(2 + 7) ≤ 3
√9 ≤ 3 (True)
So, there are 5 solutions for m. Answer is option E.
Problem 11 :
If (x + 1)2 = 4 and (x − 1)2 = 16, what are the values of x?
(A) −3 (B) −1 (C) 1 (D) 3 (E) 5
Solution :
(x + 1)2 = 4 and (x − 1)2 = 16
From (x + 1)2 = 4
x + 1 = √4
x + 1 = ±2
x + 1= 2 and x + 1 = -2
x = 1 and x = -3
From (x − 1)2 = 16
x - 1 = √16
x - 1 = ±4
x - 1 = 4 and x - 1 = -4
x = 5 and x = -3
The possible values of x are 1, -3 and 5. So, options A, C and E are correct.
Problem 12 :
If x + y + z = 0, and x2 + y2 + z2 = 16, then find the value of xy + yz + xz.
Solution :
x + y + z = 0 ------(1)
x2 + y2 + z2 = 16 --------(2)
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)
02 = 16 + 2(xy + yz + zx)
2(xy + yz + zx) = -16
xy + yz + zx = -16/2
xy + yz + zx = -8
So, the value of xy + yz + zx is -8.
Problem 13 :
If x – y = 4 and xy = 21, compute the value of x3 – y3.
Solution :
x – y = 4 -----(1)
xy = 21 -----(2)
x3 – y3 = (x - y)3 - 3xy(x - y)
Applying the values given, we get
= 43 - 3(21)(4)
= 64 - 252
= -188
So, the value of x3 – y3 is -188.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 23, 24 09:36 PM
Nov 23, 24 10:01 AM
Nov 23, 24 09:45 AM