FACTORING POLYNOMIALS USING ALGEBRAIC IDENTITIES

Trinomials—Look for Perfect-Square Trinomials :

a2 + 2ab + b2  =  (a + b)2

a2 - 2ab + b2  =  (a - b)2

Examples : 

x2 + 4x + 4  =  x2 + 2(x)(2) + 22  =  (x + 2)2

m2 - 6m + 9  =  m2 - 2(m)(3) + 32  =  (m - 3)2

Binomials—Look for a Difference of Two Squares :

a2 - b2  =  (a + b)(a - b)

Example : 

4x2 - 9y2  =  22x2 - 32y2

=  (2x)2 - (3y)2

=  (2x + 3y)(2x - 3y)

Solved Problems

Problem 1 :

Factor :

x2 + 6xy + 9y2

Solution : 

x2 + 6xy + 9y=  x2 + 2(x)(3y) + (3y)2

=  (x + 3y)2

=  (x + 3y)(x + 3y)

Problem 2 :

Factor :

4a2 - 20ab + 25b2

Solution : 

4a2 - 20ab + 25b2  =  22a2 - 20ab + 52b2

=  (2a)2 - 20ab + (5b)2

=  (2a)2 - 2(2a)(5b) + (5b)2

=  (2a - 5b)2

=  (2a - 5b)(2a - 5b)

Problem 3 :

Factor :

2x2 + 12xy + 18y2

Solution : 

Factor out the GCF.

=  2(x2 + 6xy + 9y2)

=  2[x2 + 2(x)(3y) + (3y)2]

=  2(x + 3y)2

=  2(x + 3y)(x + 3y) 

Problem 4 :

Factor :

2ab2 - 16ab + 32a

Solution : 

Factor out the GCF.

=  2a(b2 - 8b + 16)

=  2a[b2 - 2(b)(4) + 42]

=  2a(b - 4)2

Problem 5 :

Factor :

x2 - 25y2

Solution : 

x2 - 25y2  =  x2 - 52y2

=  x2 - (5y2)

=  (x + 5y)(x - 5y)

Problem 6 :

Factor :

9m2 - 16n2

Solution : 

9m2 - 16y2  =  32m2 - 42n2

=  (3m)2 - (4n2)

=  (3m + 4n)(3m - 4n)

Problem 7 :

Factor :

x4 - y4

Solution : 

x4 - y4  =  (x2)2 - (y2)2

=  (x2 + y2)(x2 - y2)

=  (x2 + y2)(x + y)(x - y)

Problem 8 :

Factor :

8p4 - 18q4

Solution : 

Factor out the GCF.

32p4 - 162q4  =  2(16p4 - 81q4)

=  2[42(p2)2 - 92(q2)2]

=  2[(4p2)2 - (9q2)2]

=  2(4p2 + 9q2)(4p2 - 9q2)

=  2(4p2 + 9q2)[(2p)2 - (3q)2]

=  2(4p2 + 9q2)(2p + 3q)(2p - 3q)

Problem 9 :

If a and b are numbers such that (a−4)(b+6) = 0, then what is the smallest possible value of a2 + b2 ?

Solution :

Given that, 

(a−4)(b+6) = 0

Equating each factor to 0, we get

a - 4 = 0 and b + 6 = 0

a = 4 and b = -6

Applying the values of a and b solved above in a2 + b2

a2 + b2 = 42 + (-6)2

= 16 + 36

= 52

So, the smallest possible value is 52.

Problem 10 :

Let m be an even integer. How many possible values of m satisfy √(m+7) ≤ 3?

(A) One     (B) Two    (C) Three    (D) Four    (E) Five

Solution :

√(m+7) ≤ 3

The value that we choose for m should be lesser than 7, then only we get positive values inside the square root.

When m = -6

√(-6 + 7) ≤ 3

√1 ≤ 3 (True)

When m = -4

√(-4 + 7) ≤ 3

√3 ≤ 3 (True)

When m = -2

√(-2 + 7) ≤ 3

√5 ≤ 3 (True)

When m = 0

√(0 + 7) ≤ 3

√7 ≤ 3 (True)

When m = 2

√(2 + 7) ≤ 3

√9 ≤ 3 (True)

So, there are 5 solutions for m. Answer is option E.

Problem 11 :

 If (x + 1)= 4 and (x − 1)= 16, what are the values of x?

(A) −3   (B) −1   (C) 1   (D) 3    (E) 5

Solution :

(x + 1)= 4 and (x − 1)= 16

From (x + 1)= 4

x + 1 = √4

x + 1 = ±2

x + 1= 2 and x + 1 =  -2

x = 1 and x = -3

From (x − 1)= 16

x - 1 = √16

x - 1 = ±4

x - 1 = 4 and x - 1 = -4

x = 5 and x = -3

The possible values of x are 1, -3 and 5. So, options A, C and E are correct.

Problem 12 :

If x + y + z = 0, and x2 + y2 + z2 = 16, then find the value of xy + yz + xz.

Solution :

x + y + z = 0 ------(1)

x2 + y2 + z2 = 16 --------(2)

(x + y + z)2x2 + y2 + z2 + 2xy + 2yz + 2zx

(x + y + z)= x2 + y2 + z2 + 2(xy + yz + zx)

0= 16 + 2(xy + yz + zx)

2(xy + yz + zx) = -16

xy + yz + zx = -16/2

xy + yz + zx = -8

So, the value of xy + yz + zx is -8.

Problem 13 :

If x – y = 4 and xy = 21, compute the value of x3 – y3.

Solution :

x – y = 4 -----(1)

xy = 21 -----(2)

x3 – y3 = (x - y)3 - 3xy(x - y)

Applying the values given, we get

= 43 - 3(21)(4)

= 64 - 252

= -188

So, the value of x3 – y3 is -188.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 72)

    Nov 23, 24 09:36 PM

    digitalsatmath57.png
    Digital SAT Math Problems and Solutions (Part - 72)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More