Factor each completely.
1) m3 + 8
2) a3 - 125
3) x3 + 8y3
4) 8x3 - 125y3
5) 27x3 + 64y3
6) 2m3 - 54n3
7) 256p3 + 500q3
8) 648a3 - 3b3
Find the following products:
9) (3x + 2y)(9x2 – 6xy + 4y2)
10) (4x – 5y)(16x2 + 20xy + 25y2)
11) (7p4 + q)(49p8 – 7p4q + q2)
12) (x/2 + 2y)(x2/4 – xy + 4y2)
13) (3/x – 5/y)(9/x2 + 25/y2 + 15/xy)
14) (2/x + 3x)(4/x2 + 9x2 – 6)
15) (3/x – 2x2)(9/x2 + 4x4 – 6x)
16) (1 – x)(1 + x + x2)
17) If a + b = 10 and ab = 16, find the value of a2 – ab + b2 and a2 + ab + b2.
18) If a + b = 8 and ab = 6, find the value of a3 + b3.
1. Answer :
m3 + 8 = m3 + 23
= m3 + 23
= (m + 2)(m2 - 2m + 22)
= (m + 2)(m2 - 2m + 4)
2. Answer :
a3 - 125 = a3 - 53
= a3 - 53
= (a - 5)(a2 + 5a + 52)
= (a - 5)(a2 + 5a + 25)
x3 + 8y3
3. Answer :
x3 + 8y3 = x3 + 23y3
= x3 + (2y)3
= (x + 2y)[x2 - (x)(2y) + (2y)2]
= (x + 2y)(x2 - 2xy + 4y2)
8x3 - 125y3
4. Answer :
8x3 - 125y3 = 23x3 - 53y3
= (2x)3 - (5y)3
= (2x - 5y)[(2x)2 + (2x)(5y) + (5y)2]
= (2x - 5y)(4x2 + 10xy + 25y2)
5. Answer :
27x3 + 64y3 = 33x3 + 43y3
= (3x)3 + (4y)3
= (3x + 4y)[(3x)2 - (3x)(4y) + (4y)2]
= (3x + 4y)(9x2 - 12xy + 16y2)
6. Answer :
2m3 - 54n3 = 2(m3 - 27n3)
= 2(m3 - 33n3)
= 2[m3 - (3n)3]
= 2(m - 3n)[m2 + (m)(3n) + (3n)2]
= 2(m - 3n)(m2 + 3mn + 9n2)
7. Answer :
256p3 + 500q3 = 4(64p3 + 125q3)
= 4[(4p)3 + (5q)3]
= 4(4p + 5q)[(4p)2 - (4p)(5q) + (5q)2]
= 4(4p + 5q)(16p2 - 20pq + 25q2)
8. Answer :
648a3 - 3b3 = 3(216a3 - b3)
= 3[(6a)3 - b3]
= 3(6a - b)[(6a)2 + (6a)(b) + b2]
= 4(6a - b)(36a2 + 6ab + b2)
9. Answer :
= (3x + 2y)(9x2 – 6xy + 4y2)
= (3x + 2y)(32x2 – 3x(2y) + 22y2)
= (3x + 2y)((3x)2 – 3x(2y) + (2y)2)
Looks like (a + b) (a2 - ab + b2), then we write it as a3 + b3
= (3x)3 + (2y)3
= 27x3 + 8y3
10. Answer :
= (4x – 5y)(16x2 + 20xy + 25y2)
= (4x - 5y)(42x2 – 4x(5y) + 52y2)
= (4x - 5y)((4x)2 – 4x(5y) + (5y)2)
Looks like (a - b) (a2 + ab + b2), then we write it as a3 - b3
= (4x)3 - (5y)3
= 64x3 - 125y3
11. Answer :
= (7p4 + q)(49p8 – 7p4q + q2)
= (7p4 + q) [72(p4)2 – 7p4(q) + q2]
= (7p4 + q) ((7p4)2 – 7p4(q) + q2]
Looks like (a + b) (a2 - ab + b2), then we write it as a3 + b3
= (7p4)3 - q3
= 343p12 - q3
12. Answer :
= (x/2 + 2y)(x2/4 – xy + 4y2)
= (x/2 + 2y)[ (x/2)2 – (x/2)(2y) + (2y)2 ]
Looks like (a + b) (a2 - ab + b2), then we write it as a3 + b3
= (x/2)3 - (2y)3
= x3/8 - 8y3
13. Answer :
= (3/x – 5/y)(9/x2 + 25/y2 + 15/xy)
= (3/x – 5/y)[(3/x)2 + (5/y)2 + (3/x)(5/y)]
Looks like (a - b) (a2 + ab + b2), then we write it as a3 - b3
= (3/x)3 - (5/y)3
= 27/x3 - 125/y3
14. Answer :
= (2/x + 3x)(4/x2 + 9x2 – 6)
= (2/x + 3x)[(2/x)2 + (3x)2 - (2/x)(3x)]
Looks like (a + b) (a2 - ab + b2), then we write it as a3 + b3
= (2/x)3 + (3x)3
= 8/x3 + 27x3
15. Answer :
= (3/x – 2x2)(9/x2 + 4x4 + 6x)
= (3/x – 2x2)[(32/x2 + 22(x2)2 + 6x)
= (3/x – 2x2)[(3/x)2 + (2x2)2 + (3/x)2x2)
Looks like (a - b) (a2 + ab + b2), then we write it as a3 - b3
= (3/x)3 - (2x2)3
= 27/x3 - 8x6
16. Answer :
= (1 – x)(1 + x + x2)
= (1 – x)(1 + x(1) + x2)
= 1 - x3
17 Answer :
If a + b = 10 and ab = 16, find the values of a2 – ab + b2, a3 + b3 and a2 + ab + b2.
a + b = 10 -----(1)
ab = 16 -----(2)
Formula for
a3 + b3 = (a + b)(a2 - ab + b2) ----(1)
Here solving for a2 + b2 = (a + b)2- 2ab
a2 + b2 = 102- 2(16)
= 100 - 32
a2 + b2 = 68
Applying these values in (1), we get
= (10)(68 - 16)
= 10(52)
a3 + b3 = 520
a2 - ab + b2 = 68 - 16
= 52
a2 + ab + b2 = 68 + 16
= 84
18 Answer :
If a + b = 8 and ab = 6, find the value of a3 + b3.
a + b = 8 -----(1)
ab = 6 -----(2)
Formula for
a3 + b3 = (a + b)(a2 - ab + b2)
Here solving for a2 + b2 = (a + b)2- 2ab
a2 + b2 = 82- 2(6)
= 64 - 12
= 52
= (8)(52 - 6)
= 8(46)
= 368
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Apr 26, 25 11:18 AM
Apr 26, 25 05:49 AM
Apr 25, 25 11:46 AM