The sum or difference of two cubes can be factored into a product of a binomial times a trinomial.
That is,
a3 - b3 = (a - b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 + ab + b2)
When we have an expression like a3 - b3 or a3 + b3, we can write it as product of a binomial and a trinomial.
In sum of two cubes, the binomial factor on the right side of the equation has a middle sign that is positive. And also, the middle sign of the trinomial factor is always opposite the middle sign of the given problem. Therefore, it is negative.
In difference of two cubes, the binomial factor on the right side of the equation has a middle sign that is negative. And also, the middle sign of the trinomial factor is always opposite the middle sign of the given problem. Therefore, it is positive.
Example 1 :
Factor :
m3 + 8
Solution :
m3 + 8 = m3 + 23
= m3 + 23
= (m + 2)(m2 - 2m + 22)
= (m + 2)(m2 - 2m + 4)
Example 2 :
Factor :
a3 - 125
Solution :
a3 - 125 = a3 - 53
= a3 - 53
= (a - 5)(a2 + 5a + 52)
= (a - 5)(a2 + 5a + 25)
Example 3 :
Factor :
x3 + 8y3
Solution :
x3 + 8y3 = x3 + 23y3
= x3 + (2y)3
= (x + 2y)[x2 - (x)(2y) + (2y)2]
= (x + 2y)(x2 - 2xy + 4y2)
Example 4 :
Factor :
8x3 - 125y3
Solution :
8x3 - 125y3 = 23x3 - 53y3
= (2x)3 - (5y)3
= (2x - 5y)[(2x)2 + (2x)(5y) + (5y)2]
= (2x - 5y)(4x2 + 10xy + 25y2)
Example 5 :
Factor :
27x3 + 64y3
Solution :
27x3 + 64y3 = 33x3 + 43y3
= (3x)3 + (4y)3
= (3x + 4y)[(3x)2 - (3x)(4y) + (4y)2]
= (3x + 4y)(9x2 - 12xy + 16y2)
Example 6 :
Factor :
2m3 - 54n3
Solution :
2m3 - 54n3 = 2(m3 - 27n3)
= 2(m3 - 33n3)
= 2[m3 - (3n)3]
= 2(m - 3n)[m2 + (m)(3n) + (3n)2]
= 2(m - 3n)(m2 + 3mn + 9n2)
Simplify each of the following :
Example 7 :
(x + 3)3 + (x – 3)3
Solution :
a3 + b3 = (a + b)(a2 - ab + b2)
Comparing the given question with a3 + b3, we know that
a = x + 3 and b = x - 3
Applying these values in the formula
= (x + 3 + x - 3)[ (x + 3)2 - (x + 3)(x - 3) + (x - 3)2]
= 2x [ x2 + 6x + 9 - (x2 - 32) + x2 - 6x + 9]
= 2x [ x2 + 9 - x2 + 9 + x2 + 9]
= 2x ( x2 + 27)
= 2x3 + 54x
Example 8 :
If a + b = 10 and ab = 21, find the value of a3 + b3
Solution :
a3 + b3 = (a + b)(a2 - ab + b2)
By applying these values in the formula, we get
= 10(a2 - 21 + b2) -----(1)
a2 + b2 = (a + b)2 - 2ab
= (10)2 - 2(21)
= 100 - 42
a2 + b2 = 58
Apply this value in (1)
= 10(58 - 21)
= 10(37)
= 370
Example 9 :
If a – b = 4 and ab = 21, find the value of a3 – b3.
Solution :
a3 - b3 = (a - b)(a2 + ab + b2)
By applying these values in the formula, we get
= 4(a2 + 21 + b2) -----(1)
a2 + b2 = (a - b)2 + 2ab
= (4)2 + 2(21)
= 16 + 42
a2 + b2 = 58
Apply this value in (1)
= 4(58 + 21)
= 4(79)
= 316
Example 10 :
If x + 1/x = 5, find the value of x3 + 1/x3 .
Solution :
a3 + b3 = (a + b)(a2 - ab + b2)
x3 + 1/x3 = (x + 1/x)(x2 - x(1/x) + (1/x)2)
= (x + 1/x)(x2 - 1 + (1/x)2) ----(1)
By applying these values in the formula, we get
a2 + b2 = (a + b)2 - 2ab
x2 + 1/x2 = (x + 1/x)2 - 2x(1/x)
= (x + 1/x)2 - 2
= 52 - 2
x2 + 1/x2 = 23
apply this value in (1), we get
= 5(23 - 1)
= 5(22)
= 110
Example 11 :
If x - 1/x = 7, find the value of x3 - 1/x3 .
Solution :
a3 - b3 = (a - b)3 - 3ab(a - b)
x3 - 1/x3 = (x - 1/x)3 - 3x(1/x)(x - 1/x)
= 73 - 3(7)
= 343 - 21
= 322
Example 12 :
If (x2 + 1/x2) = 98, find the value of x3 + 1/x3.
Solution :
a2 + b2 = (a + b)2 - 2ab
x2 + 1/x2 = (x + 1/x)2 - 2x(1/x)
98 = (x + 1/x)2 - 2
(x + 1/x)2 = 98 + 2
(x + 1/x)2 = 100
x + 1/x = 10
a3 + b3 = (a + b)3 - 3ab(a + b)
x3 + 1/x3 = (x + 1/x)3 - 3x(1/x)(x + 1/x)
= 103 - 3(10)
= 1000 - 30
= 970
Example 13 :
If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 27y3.
Solution :
a3 + b3 = (a + b)3 - 3ab(a + b)
8x3 + 27y3 = (2x)3 + (3y)3
= (2x + 3y)3 - 3(2x)(3y)(2x + 3y)
= (13)3 - 18xy(13)
= (13)3 - 18(6)(13)
= 2197 - 1404
8x3 + 27y3 = 793
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 06, 25 05:53 AM
Jan 06, 25 02:23 AM
Jan 06, 25 02:20 AM