FACTORING SUM AND DIFFERENCE OF CUBES

The sum or difference of two cubes can be factored into a product of a binomial times a trinomial.

That is, 

a3 - b3  =  (a - b)(a2 + ab + b2)

a3 + b3  =  (a + b)(a2 + ab + b2)

When we have an expression like a3 - b3 or a3 + b3, we can write it as product of a binomial and a trinomial. 

Sum of Two Cubes

In sum of two cubes, the binomial factor on the right side of the equation has a middle sign that is positive. And also, the middle sign of the trinomial factor is always opposite the middle sign of the given problem. Therefore, it is negative.

Difference of Two Cubes

In difference of two cubes, the binomial factor on the right side of the equation has a middle sign that is negative. And also, the middle sign of the trinomial factor is always opposite the middle sign of the given problem. Therefore, it is positive.

Example 1 :

Factor : 

m3 + 8

Solution :

m3 + 8  =  m+ 23

=  m3 + 23

=  (m + 2)(m2 - 2m + 22)

=  (m + 2)(m2 - 2m + 4)

Example 2 :

Factor : 

a3 - 125

Solution :

a3 - 125  =  a- 53

=  a3 - 53

=  (a - 5)(a2 + 5a + 52)

=  (a - 5)(a2 + 5a + 25)

Example 3 :

Factor : 

x3 + 8y3

Solution :

x3 + 8y3  =  x3 + 23y3

=  x3 + (2y)3

=  (x + 2y)[x2 - (x)(2y) + (2y)2]

=  (x + 2y)(x2 - 2xy + 4y2)

Example 4 :

Factor : 

8x3 - 125y3

Solution :

8x3 - 125y3  =  23x3 - 53y3

=  (2x)3 - (5y)3

=  (2x - 5y)[(2x)2 + (2x)(5y) + (5y)2]

=  (2x - 5y)(4x2 + 10xy + 25y2)

Example 5 :

Factor : 

27x3 + 64y3

Solution :

27x3 + 64y3  =  33x3 + 43y3

=  (3x)3 + (4y)3

=  (3x + 4y)[(3x)2 - (3x)(4y) + (4y)2]

=  (3x + 4y)(9x2 - 12xy + 16y2)

Example 6 :

Factor : 

2m3 - 54n3

Solution :

2m3 - 54n3  =  2(m3 - 27n3)

=  2(m3 - 33n3)

=  2[m3 - (3n)3]

=  2(m - 3n)[m2 + (m)(3n) + (3n)2]

=  2(m - 3n)(m2 + 3mn + 9n2)

Simplify each of the following :

Example 7 :

(x + 3)3 + (x – 3)3

Solution :

a3 + b3  =  (a + b)(a2 - ab + b2)

Comparing the given question with a3 + b3, we know that 

a = x + 3 and b = x - 3

Applying these values in the formula

=  (x + 3 + x - 3)[ (x + 3)2 - (x + 3)(x - 3) + (x - 3)2]

= 2x [ x2 + 6x + 9 - (x2 - 32) + x2 - 6x + 9]

= 2x [ x2 + 9 - x2 + 9 + x2 + 9]

= 2x ( x2 + 27)

= 2x3 + 54x

Example 8 :

If a + b = 10 and ab = 21, find the value of a3 + b3

Solution :

a3 + b3  =  (a + b)(a2 - ab + b2)

By applying these values in the formula, we get

= 10(a2 - 21 + b2) -----(1)

a2 + b2 = (a + b)2 - 2ab

= (10)2 - 2(21)

= 100 - 42

a2 + b= 58

Apply this value in (1)

= 10(58 - 21)

= 10(37)

= 370

Example 9 :

If a – b = 4 and ab = 21, find the value of a3 – b3.

Solution :

a3 - b3  =  (a - b)(a2 + ab + b2)

By applying these values in the formula, we get

= 4(a2 + 21 + b2) -----(1)

a2 + b2 = (a - b)2 + 2ab

= (4)2 + 2(21)

= 16 + 42

a2 + b= 58

Apply this value in (1)

= 4(58 + 21)

= 4(79)

= 316

Example 10 :

If x + 1/x = 5, find the value of x3 + 1/x3 .

Solution :

a3 + b3  =  (a + b)(a2 - ab + b2)

x3 + 1/x3  =  (x + 1/x)(x2 - x(1/x) + (1/x)2)

=  (x + 1/x)(x2 - 1 + (1/x)2) ----(1)

By applying these values in the formula, we get

a2 + b2 = (a + b)2 - 2ab

x2 + 1/x2 =  (x + 1/x)2 - 2x(1/x)

(x + 1/x)2 - 2

= 52 - 2

x2 + 1/x2 = 23

apply this value in (1), we get

=  5(23 - 1)

= 5(22)

= 110

Example 11 :

If x - 1/x = 7, find the value of x3 - 1/x3 .

Solution :

a3 - b3  =  (a - b)3 - 3ab(a - b)

x3 - 1/x3  =  (x - 1/x)3 - 3x(1/x)(x - 1/x)

=  73 - 3(7)

= 343 - 21

= 322

Example 12 :

If (x2 + 1/x2) = 98, find the value of x3 + 1/x3.

Solution :

a2 + b2 = (a + b)2 - 2ab

x2 + 1/x2 = (x + 1/x)2 - 2x(1/x)

98 = (x + 1/x)2 - 2

(x + 1/x)2 = 98 + 2

(x + 1/x)2 = 100

x + 1/x = 10

a3 + b3  =  (a + b)3 - 3ab(a + b)

x3 + 1/x3  =  (x + 1/x)3 - 3x(1/x)(x + 1/x)

=  103 - 3(10)

= 1000 - 30

= 970

Example 13 :

If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 27y3.

Solution :

a3 + b3  =  (a + b)3 - 3ab(a + b)

8x3 + 27y= (2x)3 + (3y)3

= (2x + 3y)3 - 3(2x)(3y)(2x + 3y)

= (13)3 - 18xy(13)

= (13)3 - 18(6)(13)

= 2197 - 1404

8x3 + 27y= 793

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 5)

    Jan 06, 25 05:53 AM

    AP Calculus AB Problems with Solutions (Part - 5)

    Read More

  2. ALGEBRA - II : Simplifying Complex Fractions Problems and Solutions

    Jan 06, 25 02:23 AM

    ALGEBRA - II : Simplifying Complex Fractions Problems and Solutions

    Read More

  3. ALGEBRA - II : Factoring Polynomials Problems with Solutions

    Jan 06, 25 02:20 AM

    ALGEBRA - II : Factoring Polynomials Problems with Solutions

    Read More