FIND ANGLES OF ISOCELES TRAINGLE

An isosceles triangle is a triangle in which two sides are equal in length.

The two sides which are having equal measures will have equal angles.

Example 1 :

Solution :

Since AB  =  BC, <C  =  <A

The Sum of interior angles of a triangle is 180˚

So, <A + <B + <C  =  180˚

72˚+x˚+72˚  =  180˚

144˚+x˚  =  180˚

x  =  36˚

<B  =  36˚

So, the missing angle x is 36˚.

Example 2 :

Solution :

Since PQ  =  PR, <PQR  =  <PRQ  =  x

So, <P + <Q + <R  =  180˚

70˚ + x˚ + x˚   =  180˚

70˚ + 2x˚  =  180˚

2x˚  =  180˚ - 70˚

x  =  110/2

x  =  55˚

<Q  =  <R  =  55˚

<Q  =  55˚ and <R  =  55˚

So, the missing angle x is 55˚

Example 3 :

Solution :

Since AB  =  AC, <B  =  <C

<B  =  <C  =  (2x)˚

The Sum of interior angles of a triangle is 180˚

So, <A + <B + <C  =  180˚

x˚ + 2x˚ + 2x˚  =  180˚

x˚ + 4x˚  =  180˚

5x˚  =  180˚

x˚  =  180/5

x  =  36˚

So, the missing angle x is 36˚

Example 4 :

Since RQ  =  RP

<P  =  <Q

x˚  =  (146 – x)˚

x  =  146 – x

x + x  =  146

2x  =  146

x  =  146/2

x  =  73˚

So, the missing angle x is 73˚.

Example 5 :

Solution :

<B  =  <D

<DBC + <DBA  =  180˚ (linear pair of angles)

<DBC + 120˚  =  180˚

<DBC  =  180˚-120˚

<DBC  =  60˚

<B  =  60˚

<B  =  <D  =  60˚

The Sum of interior angles of a triangle is 180˚

<C + <B + <D  =  180˚

x˚ + 60˚ + 60˚  =  180˚

x˚ + 120˚  =  180˚

x  =  180˚ - 120˚

x  =  60˚

So, the missing angle x is 60˚.

Example 6 :

Solution :

Since AD  =  DB, ∆ABC is an isosceles triangle.

DB  =  BC, ∆DBC is an isosceles triangle.

<DAB  =  <DBA  =  65

<DBA + <DBC  =  180

65 + <DBC  =  180

<DBC  =  115

In triangle DBC.

Let x be <BCD and <CDB

<DBC + <BCD + <CDB  =  180

115 + x + x  =  180

2x  =  180-115

2x  =  65

x  =  32.5

Example 7 :

Solution :

Since <B  =  <C  =  75˚

AB  =  x cm, AC  =  16 cm

AB  =  AC

x  =  16 cm

Example 8 :

Solution :

In triangle ADB

<DAB  =  <DBA  =  (46˚)

In triangle BDC

BD  =  BC  (9 cm)

DA  =  DB

BD  =  9 cm

So,

x  =  BD

x  =  9 cm and DA  =  9 cm

Example 9 :

Solution :

∆ABC is an isosceles triangle (AB  =  AC).

 base <B  =  <C are equal.

M is the midpoint of the angle bisects the base at right angles.

<AMC  =  <AMB  =  90˚

x  =  90˚

Example 10 :

The figure alongside has not been drawn accurately:

a) Find x.

b) What can be deduced about the triangle?

Solution :

(a)  <A + <B + <C  =  180

x + x + 24 + 52  =  180

2x + 76  =  180

2x  =  104

x  =  52

(b)  In the above triangle, two angles are equal. So it is isosceles triangle.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 21, 24 06:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 74)

    Nov 20, 24 08:12 AM

    digitalsatmath60.png
    Digital SAT Math Problems and Solutions (Part - 74)

    Read More