FIND CENTER VERTICES AND CO-VERTICES OF AN ELLIPSE

Ellipse - Symmetric About x-Axis

where a2 > b2 and major axis is along x-axis.

Center : (0, 0).

Vertices : A(a, 0) and A'(-a, 0).

Co-vertices : B(0, b) and B(0, -b).

Foci : F(ae, 0) and F'(-ae, 0)

Ellipse - Symmetric About y-Axis

where a2 > b2 and major axis is along y-axis.

Center : (0, 0).

Vertices : A(0, a) and A'(0, -a).

Co-vertices : B(b, 0) and B(-b, 0).

Foci : F(o, ae) and F'(0, -ae)

Find the center, vertices and co-vertices of the following ellipses.

Example 1 :

Solution :

The above ellipse is symmetric about x-axis.

a2 = 25

a2 = 52

a = 5

b2 = 9

b2 = 32

b = 3

Center : (0, 0).

Vertices :

A(a, 0) and A'(-a, 0)

A(5, 0) and A'(-5, 0)

Co-vertices :

B(0, b) and B'(0, -b)

B(0, 3) and B'(0, -3)

Example 2 :

Let X = x - 1 and Y = y + 1.

The above ellipse is symmetric about Y-axis.

a2 = 16

a2 = 42

a = 4

b2 = 9

b2 = 32

b = 3

Center :

(0, 0)

X = 0  and  Y = 0

Substitute X = x - 1 and Y = y + 1.

x - 1 = 0  and  y + 1 = 0

x = 1  and  y = -1

The center is (1, -1)

Vertices :

A(0, a)  and  A'(0, -a)

A(0, 4)  and  A'(0, -4)

(0, 4)

X = 0  and  Y = 4

x - 1 = 0  and  y + 1 = 4

x = 1  and  y = 3

(1, 3)

(0, -4)

X = 0  and  Y = -4

x - 1 = 0  and  y + 1 = -4

x = 1  and  y = -5

(1, -5)

The vertices are (1, 3) and (1, -5).

Co-vertices :

B(b, 0)  and  B'(-b, 0)

B(3, 0)  and  B'(-3, 0)

(3, 0)

X = 3  and  Y = 0

x - 1 = 3  and  y + 1 = 0

x = 4  and  y = -1

(4, -1)

(-3, 0)

X = -3  and  Y = 0

x - 1 = -3  and  y + 1 = 0

x = -2  and  y = -1

(-2, -1)

The co-vertices are (4, -1) and (-2, -1).

Example 3 :

4x2 + 32x + 36y2 - 72y - 44 = 0

Solution :

The given equation of ellipse is not in standard form. Convert it to standard form.

4x2 + 32x + 36y2 - 72y - 44 = 0

4(x2 + 8x) + 36(y2 - 2y) - 44 = 0

4[x2+ 2x(4) + 4- 42] + 36[y- 2y(1) + 1- 12] - 44 = 0

4[(x + 4)2- 16] + 36[(y - 1)2- 1] - 44 = 0

4(x + 4)2- 64 + 36(y - 1)2- 36 - 44 = 0

4(x + 4)2 + 36(y - 1)2 - 144 = 0

4(x + 4)2 + 36(y - 1)2 = 144

Divide both sides by 144.

The above ellipse is symmetric about X-axis.

a2 = 36

a2 = 62

a = 6

b2 = 4

b2 = 22

b = 2

Center :

(0, 0)

X = 0  and  Y = 0

Substitute X = x + 4 and Y = y - 1.

x + 4 = 0  and  y - 1 = 0

x = -4  and  y = 1

The center is (-4, 1)

Vertices :

A(a, 0)  and  A'(-a, 0)

A(6, 0)  and  A'(-6, 0)

(6, 0)

X = 6  and  Y = 0

x + 4 = 6  and  y - 1 = 0

x = 2  and  y = 1

(2, 1)

(-6, 0)

X = -6  and  Y = 0

x + 4 = -6  and  y - 1 = 0

x = -10  and  y = 1

(-10, 1)

The vertices are (2, 1) and (-10, 1).

Co-vertices :

B(0, b)  and  B'(0, -b)

B(0, 2)  and  B'(0, -2)

(0, 2)

X = 0  and  Y = 2

x + 4 = 0  and  y - 1 = 2

x = -4  and  y = 3

(-4, 3)

(0, -2)

X = 0  and  Y = -2

x + 4 = 0  and  y - 1 = -2

x = -4  and  y = -1

(-4, -1)

The co-vertices are (-4, 3) and (-4, -1).

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 18, 24 08:19 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 72)

    Nov 18, 24 08:15 AM

    digitalsatmath57.png
    Digital SAT Math Problems and Solutions (Part - 72)

    Read More

  3. Word Problems on Division

    Nov 17, 24 01:42 PM

    Word Problems on Division

    Read More