FIND DIFFERENTIAL DY FOR EACH OF THE FOLLOWING FUNCTIONS

Problem 1 :

Find differential dy for each of the following functions :

(i)  y  =  (1-2x)3/(3-4x)

Solution :

u  =  (1-2x)3 and v  =  3-4x

u'  =  3(1-2x)2 (-2)  ===>  -6(1-2x)2

v'  =  -4

y'  =  [(3-4x)(-6(1-2x)2) - (1-2x)3(-4)]/(3-4x)2

y'  =  [(1-2x)2[-6(3-4x) + 4(1-2x)]/(3-4x)2

y'  =  [(1-2x)2[-18+24x+4-8x]/(3-4x)2

y'  =  [(1-2x)2(16x-14)]/(3-4x)2

y'  =  [2(1-2x)2(8x-7)]/(3-4x)2

(ii)  y  =  (3 + sin2x)2/3

Solution :

y  =  (3 + sin2x)2/3

y'  =  (2/3) (3 + sin2x)(2/3) - 1 (0+2cos 2x)

y'  =  (4/3) (3 + sin2x)(-1/3) (cos 2x)

y'  =  (4/3) (cos 2x) [1/(3 + sin2x)1/3]

(iii)  y  =  ex^2-5x+7 cos (x2-1)

Solution :

y  =  ex^2-5x+7 cos (x2-1)

u  =  ex^2-5x+7 and v  =  cos (x2-1)

u'  =  ex^2-5x+7 (2x-5) and v'  =  -sin (x2-1) (2x)

u'  =  (2x-5) ex^2-5x+7  and v'  =  -2xsin (x2-1)

=  ex^2-5x+7 (-2xsin (x2-1)) + cos (x2-1)(2x-5) ex^2-5x+7

=  ex^2-5x+7[-2xsin (x2-1) + cos (x2-1)(2x-5)]

=  ex^2-5x+7[cos (x2-1)(2x-5)-2xsin (x2-1)]

Problem 2 :

Find df for f(x)  =  x2 + 3x and evaluate it for

(i) x = 2 and dx = 0.1 (ii) x = 3 and dx = 0.02

Solution :

(i)  f(x)  =  x2 + 3x

y  =  x2 + 3x

Differentiating with respect to x.

dy/dx  =  2x+3

dy  =  (2x+3) dx

Applying x  =  2 and dx  =  0.1

dy  =  (2(2) + 3)(0.1)

dy  =  7(0.1)

dy  =  0.7

(ii) x = 3 and dx = 0.02

dy  =  (2(3) + 3)(0.02)

dy  =  9(0.02)

dy  =  0.18

Problem 3 :

Find ∆f and df for the function f for the indicated value of x and ∆x and compare

(i)  f(x)  =  x3 - 2x2 ; x  =  2, ∆x  =  dx  =  0.5

Solution :

f(x)  =  x3 - 2x2

dy/dx  =  3x2 - 4x

dy  =  (3x2 - 4x) dx

dy  =  (3(2)2 - 4(2)) (0.5)

dy  =  (12-8) (0.5)

dy  =  4 (0.5)

dy  =  2

(ii)  f(x)  =  x2+2x+3; x  =  -0.5, ∆x  =  dx  =  0.1

Solution :

f(x)  =  y  =  x2+2x+3

dy/dx  =  2x+2

dy  =  (2x+2) dx

dy  =  (2(0.5)+2) (0.1)

dy  =  (3) (0.1)

dy  =  0.3

Problem 4 :

Assuming log10 e  =  0.4343, find the approximate value of log 10 1003

Solution :

1003  =  1000 + 3

f(1000 + 3)  =  y + dy

y  =  log x

dy  =  (1/x) dx

=  log 1000 + (1/1000) x 3 x log10 e

=  log10 103 + (1/1000) x 3 x log10 e

=  3 (1) + (1/1000) x 3 x 0.4343

=  3 + 0.0013029

=  3.0013029

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More