Taylor’s series and Maclaurin's series expansion of a function which are infinitely differentiable
(i) ex
Solution :
Let f(x) = ex
f(x) = ex f(0) = e0 f(0) = 1 |
f'(x) = ex f'(0) = e0 f'(0) = 1 |
f''(x) = ex f''(0) = e0 f''(0) = 1 |
(ii) sin x
Solution :
Let f(x) = sin x
f(x) = sin x f(0) = sin(0) f(0) = 0 |
f'(x) = cos x f'(0) = cos(0) f'(0) = 1 |
f''(x) = -sin x f''(0) = -sin (0) f''(0) = 0 |
f'''(x) = -cos x f'''(0) = -cos (0) f'''(0) = -1 |
f'v(x) = sin x fiv(0) = sin (0) fiv(0) = 0 |
fv(x) = cos x
fv(0) = cos (0)
fv(0) = 1
(iii) cos x
Solution :
Let f(x) = cos x
f(x) = cos x f(0) = cos(0) f(0) = 1 |
f'(x) = -sin x f'(0) = -sin(0) f'(0) = 0 |
f''(x) = -cos x f''(0) = -cos(0) f''(0) = -1 |
f'''(x) = sin x f'''(0) = sin(0) f'''(0) = 0 |
f'v(x) = cos x f'v(x) = cos(0) f'v(x) = 1 |
(iv) log (1-x) ; -1 ≤ x < 1
Solution :
f(x) = log (1-x)
f(0) = log (1-0) ==> 0
f'(x) = -1/(1-x)
f'(0) = -1
f''(x) = -1/(1-x)2
f''(0) = -1
f'''(x) = -2/(1-x)3
f'''(0) = -2
(v) tan-1 x ; -1 ≤ x ≤ 1
Solution :
f(x) = tan-1 x
f(0) = tan-1 (0) ==> 0
f'(x) = 1/(1+x2)
f'(x) = (1+x2)-1
f'(x) = 1 - x2 + x4 - x6 +...............
f'(0) = 1
f''(x) = 0 - 2x + 4x3 - 6x5 +...............
f''(0) = 0
f'''(x) = -2 + 12x2 - 30x4 +...............
f'''(0) = -2
f'v(x) = 24x - 120x3 +...............
f'v(0) = 0
fv(x) = 24 - 360x2 +...............
fv(0) = 24
(vi) cos2 x
Solution :
f(x) = cos2 x
f(0) = cos2 (0)
f(0) = 1
f'(x) = 2cos x (-sin x)
f'(x) = -sin 2x
f'(0) = -sin 2(0) = 0
f''(x) = -cos 2x (2)
f''(x) = -2cos 2x
f''(0) = -2cos 2(0) ==> -2
f'''(x) = 4sin 2x
f'''(0) = 4sin 2(0) ==> 0
f'v(x) = 8cos 2x
f'v(0) = 8cos 2(0) ==> 8
cos2x = 1 + (0x)/1! + (-2)x2/2! + 0x3/3! + 8x4/4! +.......
cos2x = 1 - x2 + x4/3 +.......
Problem 2 :
Write down the Taylor series expansion, of the function log x about x = 1 upto three non-zero terms for x > 0
Solution :
f(x) = log x
f(x) = f(1) + [(x-1)/1!] f'(1) + [(x-1)2/2!] f''(1)
+ [(x-1)3/3!] f'''(1) +................
f(x) = log x
f(1) = log 1 ==> 0
f'(x) = 1/x
f'(1) = 1/1 ==> 1
f''(x) = -1/x2
f''(1) = -1/12 ==> -1
f'''(x) = 1/x3
f'''(1) = 1/13 ==> 1
log x = 0 + [(x-1)/1!](1) + [(x-1)2/2!] (-1)
+ [(x-1)3/3!] (1) +................
log x = (x-1) - [(x-1)2/2] + [(x-1)3/6] (1) +................
Problem 3 :
Expand sin x in ascending powers x-π/4 upto three non zero terms.
Solution :
f(x) = sin x
x = x-π/4
f(π/4) = sin π/4 = 1/√2
f'(x) = cos x : f'(π/4) = 1/√2
f''(x) = -sin x : f''(π/4) = -1/√2
f(x) = f(π/4) + [(x-π/4)/1!] f'(π/4) + [(x-π/4)2/2!] f''(π/4) + [(x-π/4)3/3!] f'''(π/4) +................
f(x) = (1/√2) + (x-π/4) (1/√2) + [(x-π/4)2/2] (-1/√2)
+ [(x-π/4)3/6] (-1/√2) +................
f(x) = (1/√2)[1 + (x-π/4) - [(x-π/4)2/2]
- [(x-π/4)3/6] +................
Problem 4 :
Expand the polynomial f(x) = x2-3x+2 in powers of x-1.
Solution :
f(x) = x2-3x+2
f(1) = 12-3(1)+2 = 0
f'(x) = 2x-3
f'(1) = 2(1)-3 = -1
f''(x) = 2
f(x) = f(1)+[(x-1)/1!]f'(1)+[(x-1)2/2!]f''(1)
+[(x-1)3/3!]f'''(1)................
f(x) = 0+[(x-1)/1!](-1)+[(x-1)2/2!](2)
f(x) = -(x-1)+(x-1)2
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM