FIND MACLAURIN EXPANSION

Taylor’s series and Maclaurin's series expansion of a function which are infinitely differentiable

(i)  ex

Solution :

Let f(x)  =  ex

f(x)  =  ex

f(0)  =  e0

f(0)  =  1

f'(x)  =  ex

f'(0)  =  e0

f'(0)  =  1

f''(x)  =  ex

f''(0)  =  e0

f''(0)  =  1

(ii)  sin x

Solution :

Let f(x)  =  sin x

f(x)  =  sin x

f(0)  =  sin(0)

f(0)  =  0

f'(x)  =  cos x

f'(0)  =  cos(0)

f'(0)  =  1

f''(x)  =  -sin x

f''(0)  =  -sin (0)

f''(0)  =  0

f'''(x)  =  -cos x

f'''(0) = -cos (0)

f'''(0)  =  -1

f'v(x)  =  sin x

fiv(0) = sin (0)

fiv(0)  =  0

fv(x)  =  cos x

fv(0)  =  cos (0)

fv(0)  =  1

(iii)  cos x

Solution :

Let f(x)  =  cos x

f(x)  =  cos x

f(0)  =  cos(0)

f(0)  =  1

f'(x)  =  -sin x

f'(0)  =  -sin(0)

f'(0)  =  0

f''(x)  =  -cos x

f''(0)  =  -cos(0)

f''(0)  =  -1

f'''(x)  =  sin x

f'''(0)  =  sin(0)

f'''(0)  =  0

f'v(x)  =  cos x

f'v(x)  =  cos(0)

f'v(x)  =  1

(iv)  log (1-x) ; -1 ≤ x < 1

Solution :

f(x)  =  log (1-x)

f(0)  =  log (1-0)  ==>  0

f'(x)  =  -1/(1-x)

f'(0)  =  -1

f''(x)  =  -1/(1-x)2

f''(0)  =  -1

f'''(x)  =  -2/(1-x)3

f'''(0)  =  -2

(v)  tan-1 x ; -1 ≤ x  1

Solution :

f(x)  =  tan-1 x

f(0)  =  tan-1 (0)  ==>  0

f'(x)  =  1/(1+x2)

f'(x)  =  (1+x2)-1

f'(x)  =  1 - x2 + x- x6 +...............

f'(0)  =  1

f''(x)  =  0 - 2x + 4x- 6x+...............

f''(0)  =  0

f'''(x)  =  -2 + 12x- 30x+...............

f'''(0)  =  -2

f'v(x)  =  24x - 120x+...............

f'v(0)  =  0

fv(x)  =  24 - 360x+...............

fv(0)  =  24

(vi)  cos2 x

Solution :

f(x)  =  cos2 x

f(0)  =  cos2 (0) 

f(0)  =  1

f'(x)  =  2cos x (-sin x)

f'(x)  =  -sin 2x

f'(0)  =  -sin 2(0)  =  0

f''(x)  =  -cos 2x (2)

f''(x)  =  -2cos 2x

f''(0)  =  -2cos 2(0)  ==>  -2

f'''(x)  =  4sin 2x

f'''(0)  =  4sin 2(0)  ==>  0

f'v(x)  =  8cos 2x

f'v(0)  =  8cos 2(0)  ==>  8

cos2x  =  1 + (0x)/1! + (-2)x2/2! + 0x3/3! + 8x4/4! +.......

cos2x  =  1 - x2 + x4/3 +.......

Problem 2 :

Write down the Taylor series expansion, of the function log x about x = 1 upto three non-zero terms for x > 0

Solution :

f(x)  =  log x

f(x)  =  f(1) + [(x-1)/1!] f'(1) + [(x-1)2/2!] f''(1)

+ [(x-1)3/3!] f'''(1) +................

f(x)  =  log x

f(1)  =  log 1  ==>  0

f'(x)  =  1/x

f'(1)  =  1/1  ==>  1

f''(x)  =  -1/x2

f''(1)  =  -1/12  ==>  -1

f'''(x)  =  1/x3

f'''(1)  =  1/13  ==>  1

log x  =  0 + [(x-1)/1!](1) + [(x-1)2/2!] (-1)

+ [(x-1)3/3!] (1) +................

log x  =  (x-1) - [(x-1)2/2] + [(x-1)3/6] (1) +................

Problem 3 :

Expand sin x in ascending powers x-π/4 upto three non zero terms.

Solution :

f(x)  =  sin x

x  =  x-π/4

f(π/4)  =  sin π/4  =  1/√2

f'(x)  =  cos x : f'(π/4)  =  1/√2

f''(x)  =  -sin x : f''(π/4)  =  -1/√2

f(x)  =  f(π/4) + [(x-π/4)/1!] f'(π/4) + [(x-π/4)2/2!] f''(π/4) + [(x-π/4)3/3!] f'''(π/4) +................

f(x)  =  (1/√2) + (x-π/4) (1/√2) + [(x-π/4)2/2] (-1/√2)

 + [(x-π/4)3/6] (-1/√2) +................

f(x)  =  (1/√2)[1 + (x-π/4) - [(x-π/4)2/2]

 - [(x-π/4)3/6] +................

Problem 4 :

Expand the polynomial f(x)  =  x2-3x+2 in powers of x-1.

Solution :

f(x)  =  x2-3x+2

f(1)  =  12-3(1)+2  =  0

f'(x)  =  2x-3

f'(1)  =  2(1)-3  =  -1

f''(x)  =  2

f(x)  =  f(1)+[(x-1)/1!]f'(1)+[(x-1)2/2!]f''(1)

 +[(x-1)3/3!]f'''(1)................

f(x)  =  0+[(x-1)/1!](-1)+[(x-1)2/2!](2)

f(x)  =  -(x-1)+(x-1)2

Apart from the stuff given above if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More