Example 1 :
Find the value of a if the distance between the points at (7, 5) and (a, -3) is 10 units.
Solution :
d = √(x2 - x1)2 + (x2 - x1)2
Let x2 = a, x1 = 7, y2 = -3, y1 = 5
Here d = 10
10 = √(a - 7)2 + (-3-5)2
10 = √(a - 7)2 + (-8)2
10 = √(a - 7)2 + 64
10 = √(a2 - 2 a (7) + 72) + 64
10 = √(a2 - 14 a + 113)
Taking squares on both sides
102 = (√(a2 - 14 a + 113)2
a2 - 14 a + 113 - 100 = 0
a2 - 14 a + 13 = 0
(a - 1) (a - 13) = 0
a = 1 (or) a = 13
So, the missing coordinates are 1 or 13.
Example 2 :
Find the value of a if the distance between the points at (3, -1) and (a, 7) is 10 units.
Solution :
d = √(x2 - x1)2 + (x2 - x1)2
Let x2 = a, x1 = 3, y2 = 7, y1 = -1
Here d = 10
10 = √(a - 3)2 + (7 - (-1))2
10 = √(a - 3)2 + (7 + 1)2
10 = √(a - 3)2 + (8)2
10 = √(a2 - 2 a (3) + 32) + 64
10 = √(a2 - 6a + 9 + 64)
10 = √(a2 - 6a + 73)
Taking squares on both sides
102 = (√(a2 - 6 a + 73)2
a2 - 6 a + 73 - 100 = 0
a2 - 6 a - 27 = 0
(a - 9) (a + 3) = 0
a = 9 (or) a = -3
So, the missing coordinates are 9 or -3.
Example 3 :
Find the value of a if the distance between the points at (10, a) and (1, -6) is √145 units.
Solution :
d = √(x2 - x1)2 + (x2 - x1)2
Let x2 = 1, x1 = 10, y2 = -6, y1 = a
Here d = √145
√145 = √(1 - 10)2 + (-6 - a)2
√145 = √(- 9)2 + (-6 - a)2
√145 = √81 + (6 + a)2
√145 = √81 + (62 + 2(6) a + a2)
√145 = √(81 + 36 + 12 a + a2)
√145 = √a2 + 12a + 117
Taking squares on both sides
(√145)2 = (√a2 + 12a + 117)2
a2 + 12 a + 117 - 145 = 0
a2 + 12 a - 28 = 0
(a + 14) (a - 2) = 0
a = -14 (or) a = 2
So, the missing coordinates are -14 or 2.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 21, 24 02:20 AM
Dec 21, 24 02:19 AM
Dec 20, 24 06:23 AM