FIND THE AREA OF THE SHADED REGION USING POLYNOMIALS

To learn this concept, first we should be aware of operation in polynomials.

Adding and subtracting polynomials is nothing but combining the like terms.

When we multiply two polynomials, we will follow the order given below.

(1) Signs    (2) Number   (3) Variable

Let us see how it works,

Multiply (5x2) and (-2x3)

 =  (5x2)  x (-2x3)

=  -10x2+3

=  -10x5

Find the shaded area A in terms of x for :

Example 1 :

Solution :

Area of shaded region 

=  Area of large rectangle - Area of small rectangle

Area of rectangle  =  length ⋅ width

Large rectangle :

Length  =  4x and width  =  3x

Area of large rectangle  =  (4x ⋅ 3x) 

=  12x2

Small rectangle :

Length  =  2x and width  =  x

Area of small rectangle  =  (2x ⋅ x)

=  2x2   -------(2)

(1) - (2)

=  12x2-2x2

=  10x2

So, area of shaded region is 10xsquare meter.

Example 2 :

Solution :

Shaded region 

=  Area of rectangle - Area of triangle

Area of rectangle  =  length ⋅ width and 

Area of triangle  =  (1/2) ⋅ base ⋅ height

Length  =  3x and width  =  2x

Area of rectangle  =  3x(2x)  ==>  6x2 ---(1)

Area of triangle  =  (1/2)⋅ x ⋅ x

=  x2/2 ---(2)

(1) - (2)

Area of shaded region  =  6x2 - (x2/2)

=  (12x2 - x2)/2

=  11x2/2

So, area of shaded region is 11x2/2 square meter.

Example 3 :

Solution :

Area of shaded region 

=  Area of large rectangle - Area of small rectangle

Large rectangle :

length  =  2x+5, width  =  3x

Area of large rectangle  =   3x(2x+5) 

=  6x2 + 15x  ----(1)

Small rectangle :

length  =  2x, width  =  x

Area of small rectangle  =  2x(x)

=  2x2  ----(2)

(1) - (2)

Area of shaded region  =  6x2 + 15x - 2x2

Combining like terms, we get

=  4x2 + 15x

So, area of shaded region is 4x2 + 15x square meter.

Example 4 :

Solution :

Area of shaded region 

=  Area of rectangle - Area of square

Rectangle :

Length  =  x+6, width  =  x+2

Area of rectangle  = (x+6)(x+2)

=  x2+2x+6x+12

=  x2+8x+12  ----(1)

Square :

Side length  =  x

Area of square  =  x2 ----(2)

(1) - (2)

Area of shaded region  =  x2+8x+12-x2

By combining like term, we get

=  8x+12

So, area of shaded region is 8x+12 square meter.

Example 5 :

Solution :

Area of rectangle  =  length ⋅ width

=  (2x+3)(x+7)

=  2x(x) + 2x(7) + 3(x) + 3(7)

=  2x2 + 14x + 3x + 21

=  2x2 + 17x+ 21

So, area of rectangle is 2x2 + 17x+ 21 square meter. 

Example 6 :

Solution :

Area of shaded region 

=  Area of rectangle + Area of square

Rectangle :

Length  =  2x and width  =  x 

Area of rectangle  =  2x(x)

=  2x2

Square :

Length of square  =  x

Area of square  =  x(x)

=  x2

Area of shaded region  =  2x2 + x2

=  3x2

So, area of shaded region is 3x2 square meter.

Example 7 :

Solution :

Area of shaded region  =  Area of circle - Area of triangle

Area of circle  =  πr2

Area of triangle  =  (1/2) ⋅ (2r) ⋅ r  ==>  r2

Area of shaded region  =  πr- r2

=  r2(π - 1)

So, area of shaded region is r2(π - 1) square meter.

Example 8 :

Solution :

Area of shaded region  =  Area of rectangle - Area of triangle

Area of circle  =  bh

Area of triangle  =  (1/2) ⋅ b ⋅ h  ==>  bh/2

Area of shaded region  =  bh - (bh/2)

=  (bh/2)

So, area of shaded region is (bh/2) square meter.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Video Solutions (Part - 1)

    Nov 08, 24 04:58 AM

    SAT Math Video Solutions (Part - 1)

    Read More

  2. Divisibility Rules 1 to 10

    Nov 08, 24 04:55 AM

    Divisibility Rules 1 to 10 - Concept - Examples with step by step explanation

    Read More

  3. Trigonometric Identities Worksheet

    Nov 07, 24 06:47 PM

    tutoring.png
    Trigonometric Identities Worksheet

    Read More