FIND THE AREA OF OF THE SHADED REGION WITH POLYNOMIALS

To learn this concept, first we should be aware of operation in polynomials.

Adding and subtracting polynomials is nothing but combining the like terms.

When we multiply two polynomials, we will follow the order given below.

(1) Signs    (2) Number   (3) Variable

Let us see how it works,

Multiply (5x2) and (-2x3)

 =  (5x2)  x (-2x3)

=  -10x2+3

=  -10x5

Find the area A of the shaded regions if all sides are given in m:

Example 1 :

Solution :

Area of shaded region  =  Area of rectangle

length  =  7x and width  =  4x

Area of rectangle  =  7x(4x)

=  28x2

So, area of shaded region is 28x2 square meter.

Example 2 :

Solution :

Area of triangle  =  (1/2) ⋅ base ⋅ height

Base  =  b+8 and height  =  3b

=  (1/2) ⋅ (b+8) ⋅ 3b

=  (1/2) (3b2+24b) 

=  3b2/2+24b/2 

=  3b2/2+12b

Example 3 :

Solution :

Area of shaded region 

=  Area of large rectangle - Area of small rectangle

Large rectangle :

length  =  14, width  =  x + 6

Area of large rectangle  =  14(x+6)

=  14x + 84  ---(1)

Small rectangle :

length  =  5, width  =  x

Area of large rectangle  =  5(x)  ==>  5x  ---(2)

(1) - (2)

Area of shaded region  =  14x + 84 - 5x

=  9x+84 

So, area of shaded region is (9x+84) square meter.

Example 4 :

Solution :

Area of trapezium  =  (1/2) ⋅ ⋅ (a+b)

h = height and a, b are parallel sides.

h  =  a+6, a  =  6a and b  =  3a

Area of trapezium  =  (1/2) ⋅ (a+6) ⋅ (6a+3a)

=  (1/2) ⋅ (a+6) ⋅ (9a)

=  (1/2) ⋅ (9a2+54a)

(9a2/2) + (54a/2)

=  (9a2/2) + 27a

So, the area of shaded region is (9a2/2) + 27a square meter.

Example 5 :

Solution :

Area of shaded region 

=  Area of large rectangle - Area of small rectangle

Larger rectangle :

length  =  x + 15 and width  =  3x + 2

Area of large rectangle  =  (x+15) (3x+2)

=  3x2+2x+45x+30

=  3x2+47x+30  ------(1)

Small rectangle :

Length  =  2x and width  =  x + 1

Area of large rectangle  =  (2x) (x+1)

=  2x2+2x ------(2)

(1) - (2)

Area of shaded region  =  3x2+47x+30 - (2x2+2x)

=  3x2-2x2+47x-2x+30

=  x2+45x+30

So, area of shaded region is (x2+45x+30) square meter.

Example 6 :

Solution :

Area of shaded region 

=  Area of large rectangle + Area of small rectangle

Large rectangle :

Length = 2z+4, width  = z-1

Area of large rectangle  =  (2z+4)(z-1)

=  2z2-2z+4z-4

=  2z2+2z-4  ------(1)

Small rectangle :

Length = z+2, width  = z-1

Area of small rectangle  =  (z+2)(z-1)

=  z2-z+2z-2

=  z2+z-2 ------(2)

(1) + (2)

Area of shaded region =  2z2+2z-4 + z2+z-2

Combining like terms, we get

=  3z2+3z-6

So, area of shaded region is 3z2+3z-6 square meter.

Example 7 :

area-of-shaded-region-polynomial-q5.png

Solution :

Area of the shaded region

= Area of large rectangle - 4(area of small rectangles at the corner

= 3x(5x - 12) - 4x(x + 2)

= 15x2 - 36x - 4x2 - 8x

Combining the like terms, we get

= 11x2 - 44x

Example 8 :

area-of-shaded-region-polynomial-q6.png

Solution :

Area of shaded region

= Area of rectangle - area of triangle

= length x width - (1/2) base x height

= h (h) - (1/2) x (h) (h)

= h2 - (1/2)h2

= (2h2 - 1h2)/2

h2/2

So, area of the shaded portion is h2/2 square units.

Example 9 :

area-of-shaded-region-polynomial-q7.png

Solution :

Area of shaded region

= Area of rectangle - 4(area of square)

Measures of large rectangle :

length = a, width = b

Measures of small square :

side length = x

Area of shaded region = ab - 4x2

Example 10 :

area-of-shaded-region-polynomial-q8.png

Solution :

Area of shaded region = Area of triangle - area of circle

= (1/2) x base x height - πr2

= (1/2) xy - πr2

Example 11 :

area-of-shaded-region-polynomial-q9.png

Solution :

Area of shaded portion = area of large rectangle - area of small rectangle

= 4x (3x + 2) - 2x(3x)

= 12x2 + 8x - 6x2

Combining the like terms, we get

= 6x2 + 8x

Example 12 :

area-of-shaded-region-polynomial-q10.png

Solution :

Area of shaded portion

= area of large rectangle - area of small rectangle

= 5p(3p + 4) - 6(2p - 1)

= 15p2 + 20p - 12p + 6

= 15p2 + 8p + 6

Example 13 :

area-of-shaded-region-polynomial-q11.png

Solution :

Area of shaded portion = Area of large rectangle - area of small rectangle

= (x + 8)(x + 6) - 3x(x + 3)

= x2 + 6x + 8x + 48 - 3x2 - 9x

Combining the like terms, we get

= x2  - 3x+ 48  - 9x + 6x + 8x

= -2x2 + 5x + 48

Example 14 :

area-of-shaded-region-polynomial-q12.png

Solution :

Area of shaded portion = Area of triangle - area of rectangle

= (1/2) (x + 6)(2x + 5) - x(x + 1)

= (1/2)(2 x2 + 5x + 12x + 30) - x2 - x

= (1/2)(2 x2 + 17x + 30) - x2 - x

= x2 + (17/2)x + 15 - x2 - x

= (17/2)x - x + 15 

= (15/2)x + 15

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Solving Equations with the Given Roots

    Jan 23, 25 04:57 AM

    Solving Equations with the Given Roots

    Read More

  2. Given Composite Function : How to Find the Inside or Outside Function

    Jan 22, 25 02:43 AM

    How to Find the Inside or Outside Function From the Given Composite Function

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 20, 25 09:31 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More