FIND THE DERIVATIVES FROM THE LEFT AND RIGHT AT THE GIVEN POINT

For a function y = f(x) defined in an open interval (a, b) containing the point x0, the left hand and right hand derivatives of f at x = h are respectively denoted by f'(h-) and f'(h+)

f'(h-)  =  lim h-> 0-[f(x + h) - f(x)] / h

f'(h+)  =  lim h-> 0+[f(x + h) - f(x)] / h

provided the limits exist.

Question 1 :

Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?

(i)  f(x)  =  |x - 1|

Solution :

If the function is differentiable, then

f'(1-)  =  f'(1+)

f'(1-)  = limx->1- [f(x) - f(1)] / (x - 1)

=  limx->1- [-(x - 1) - 0]/(x - 1)

=  -1

f'(1+)  =  limx->1+  [f(x) - f(1)] / (x - 1)

=   limx->1+ [(x - 1) - 0]/(x - 1)

=  1

Hence the given function is not differentiable at x = 1.

(ii)  f(x)  =  √(1 - x2)

Solution :

If the function is differentiable, then

f'(1-)  =  f'(1+)

f'(1-)  =  [f(x) - f(1)] / (x - 1)

=   limx->1- [√(1 - x2) - 0]/(x - 1)

=   limx->1- [√(1 - x2) - 0]/(1 - x)

=   limx->1- -(1 + x) / √(1 - x)

=  -√2 / 0

-

Hence the given function is not differentiable at x = 1.

Solution :

If the function is differentiable, then

f'(1-)  =  f'(1+)

f'(1-)  = limx->1- [f(x) - f(1)] / (x - 1)

=  limx->1- (x - 1)/(x - 1)

=  1

f'(1+)  =  limx->1+  [f(x) - f(1)] / (x - 1)

=   limx->1+ (x2 - 1)/(x - 1)

=  limx->1+ (x + 1)(x - 1)/(x - 1)

=  limx->1+ (x + 1)

=  2

f'(1-)  =  1 and f'(1+)  =  2,  so the given function is not differentiable at x = 1.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More