FIND THE INVERSE OF A SQUARE MATRIX

Example 1 :

Solution :

So, AB  =  BA  =  I (Identity matrix)

Hence proved.

Example 2 :

Solution :

Since |A|  =  0, it is singular matrix, A-1 does not exists.

So, there is no inverse matrix of A.

Hence proved.

Example 3 :

Solution :

Example 4 :

Solution :

Example 5 :

Solution :

Example 6 :

Solution :

|A| =  +2(0 - 4) - 3(-1 + 0) - 1(-1 + 0)

=  -8 + 3 + 1

=  -8 + 4

|A| =  -4

-4 ≠ 0

Since |A|  =  -4 ≠ 0, it is non singular matrix. A-1 exists.

Example 7 :

Solution :

General term : 

bij  =  = |i – j|

 (where 1 ≤ i ≤ 3, 1 ≤ j ≤ 3)

Number of rows of the required matrix is 3.

Number of columns of the required matrix is 3.

Finding the elements :

bij |i – j|

b11  |1 – 1|

b11  = 0

bij |i – j|

b12  |1 – 2|

b12  = 1

bij |i – j|

b13  |1 – 3|

b12  = 2

bij |i – j|

b21  |2 – 1|

b21  = 1

bij |i – j|

b22  |2 – 2|

b22  = 0

bij |i – j|

b23  |2 – 3|

b23  = 1

bij |i – j|

b31  |3 – 1|

b31  = 2

bij |i – j|

b32  |3 – 2|

b32  = 1

bij |i – j|

b33  |3 – 3|

b33  = 0

Hence the required matrix is

Finding the inverse matrix of B :

|B| =  + 0(0 - 1) - 1(0 - 2) + 2(1 - 0)

=  2 + 2

=  4

Since |B|  =  ≠ 0, it is non singular matrix. B-1 exists.

Apart from the stuff given above if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Solving Trigonometric Equations Problems and Solutions

    Dec 18, 24 10:53 AM

    Solving Trigonometric Equations Problems and Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 17, 24 10:13 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 88)

    Dec 17, 24 10:07 AM

    digitalsatmath75.png
    Digital SAT Math Problems and Solutions (Part - 88)

    Read More