FIND THE LEAST NUMBER SHOULD BE MULTIPLIED TO GET A PERFECT SQUARE

The following steps will be useful to find the least number which has to multiplied by the given number to get a perfect square.

1. Decompose the given numbers into its prime factors.

2. Write the prime factors as pairs such that each pair has two same prime factors.

3. Find the prime factor which does not occur in pair. That is the least number to be multiplied by the given number to get a perfect square.

Example 1 :

Find the least number multiplied by 200 to get a perfect square.

Solution :

Decompose 200 into its prime factors.

Prime factors of 200 :

200 = 2 ⋅ 2 ⋅ 2 ⋅ ⋅ 5

= (2 ⋅ 2) ⋅ 2 ⋅ (5 ⋅ 5)

The prime factor 2 does not occur in pair.

So, '2' is the least number to be multiplied by 200 to get a perfect square.

Justification :

√[2(200)] = √[2(⋅ 2 ⋅ 2 ⋅ ⋅ 5)]

√400 = √[(2 ⋅ 2)(2 ⋅ 2)(5 ⋅ 5)]

= 2 ⋅ 2 ⋅ 5

= 20

Further,

2(200) = 400 = 202

Example 2 :

Find the least number multiplied by 252 to get a perfect square.

Solution :

Decompose 252 into its prime factors.

Prime factors of 252 :

252 = 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 7

= (2 ⋅ 2) ⋅ (3 ⋅ 3) ⋅ 7

The prime factor 7 does not occur in pair.

So, '7' is the least number to be multiplied by 252 to get a perfect square.

Justification :

√[7(252)] = √[7(⋅ 2 ⋅ 3 ⋅ 3 ⋅ 7)]

√1764 = √[(2 ⋅ 2)(3 ⋅ 3)(7 ⋅ 7)]

= 2 ⋅ 3 ⋅ 7

= 42

Further,

7(252) = 1764 = 422

Example 3 :

Find the least number multiplied by 180 to get a perfect square.

Solution :

Decompose 180 into its prime factors.

Prime factors of 180 :

180 = 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5

= (2 ⋅ 2) ⋅ (3 ⋅ 3) ⋅ 5

The prime factor 5 does not occur in pair.

So, '5' is the least number to be multiplied by 180 to get a perfect square.

Justification :

√[5(180)] = √[5(2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5)]

√900 = √[(2 ⋅ 2)(3 ⋅ 3)(5 ⋅ 5)]

= 2 ⋅ 3 ⋅ 5

= 30

Further,

5(180) = 900 = 302

Example 4 :

Find the least number multiplied by 90 to get a perfect square.

Solution :

Decompose 90 into its prime factors.

Prime factors of 90 :

90 = 2 ⋅ 3 ⋅ 3 5

= 2 ⋅ (3 ⋅ 3) ⋅ 5

The prime factors 2 and 5 do not occur in pair.

Product of 2 and 5 :

⋅ 5 = 10

So, '10' is the least number to be multiplied by 90 to get a perfect square.

Justification :

√[10(90)] = √[10(2 ⋅ ⋅ 3 ⋅ 5)]

√900 = √[(2 ⋅ 5)(2 ⋅ ⋅ 3 ⋅ 5)]

√[(2 2)(⋅ 3)(⋅ 5)]

⋅ 3 ⋅ 5

= 30

Further,

10(90) = 900 = 302

Example 5 :

Find the least number multiplied by 120 to get a perfect square.

Solution :

Decompose 120 into its prime factors.

Prime factors of 120 :

120 = 2 ⋅ 2 ⋅ 2 ⋅ ⋅ 5

= (2 ⋅ 2) ⋅ 2 ⋅ 3 ⋅ 5

The prime factors 2, 3 and 5 do not occur in pair.

Product of 2, 3 and 5 :

⋅ 3 ⋅ 5 = 30

So, '30' is the least number to be multiplied by 120 to get a perfect square.

Justification :

√[30(120)] = √[30(2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 5)]

√3600 = √[(2 ⋅ 3 ⋅ 5)(2 ⋅ 2 ⋅ 2  3 ⋅ 5)]

√[(2 ⋅ 2)(2 ⋅ 2)(⋅ 3)(⋅ 5)]

⋅ 2 ⋅ 3 ⋅ 5

= 60

Further,

30(120) = 3600 = 602

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. PRECALCULUS : Domain and Range of Composite Functions

    Jan 09, 25 01:09 PM

    PRECALCULUS : Domain and Range of Composite Functions

    Read More

  2. ALGEBRA - II : Solving Rational Equations Problems and Solutions

    Jan 08, 25 04:36 AM

    ALGEBRA - II : Solving Rational Equations Problems and Solutions

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 07, 25 03:55 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More