FIND THE VALUE OF B THAT MAKES THE FUNCTION CONTINUOUS

Question 1 :

Find the constant b that makes g continuous on (−∞, ∞)

Solution :

Since the function is continuous at the point x = 4, then

lim x-> 4- f(x)  =  lim x-> 4+ f(x)

lim x-> 4- f(x)  =  lim x-> 4- x2 - b2

=  42 - b2

=  16 - b2   ----(1)

lim x-> 4+ f(x)  =  lim x-> 4+- bx + 20 

=  b(4) + 20

=  4b + 20  ----(2)

(1)  =  (2)

16 - b =  4b + 20

b2 + 4b + 20 - 16  =  0

b2 + 4b + 4 =  0

(b + 2)(b + 2)  =  0

b + 2   =  0

b  =  -2

Hence the value of b is -2.

Question 2 :

Consider the function f (x) = x sin π/x What value must we give f(0) in order to make the function continuous everywhere?

Solution :

f (x) = x sin π/x 

Range of sin x is [-1, 1]

-1  ≤ sin π/x  ≤ 1

By multiplying x throught the equation, we get

-x  ≤ x (sin π/x)  ≤ x

Now let us apply the limit values

lim x -> 0 (-x)  ≤ lim x -> 0 x (sin π/x)  ≤ lim x -> 0 x

0 ≤ lim x -> 0 x (sin π/x)  ≤ 0

By sandwich theorem 

lim x -> 0 x (sin π/x)  =  0

Now let us redefine the function

From this we come to know the value of f(0) must be 0,  in order to make the function continuous everywhere

Question 3 :

The function f(x)  =  (x2 - 1) / (x3 - 1) is not defined at x = 1. What value must we give f(1) inorder to make f(x) continuous at x = 1 ?

Solution :

By applying the limit value directly in the function, we get 0/0.

Now let us simplify f(x)

f(x)  =  (x2 - 1) / (x3 - 1)

  =  (x + 1) (x - 1)/(x - 1)(x2 + x + 1)

  =  (x + 1) / (x2 + x + 1)

lim x-> 1 f(x)   = lim x-> 1  (x + 1) / (x2 + x + 1)

  =  (1 + 1)/ (1 + 1 + 1)

  =  2/3

By redefining the function, we get

From this we come to know the value of f(1) must be 2/3,  in order to make the function continuous everywhere

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More